
Assignment 5

Machine Learning, Summer term 2014, Ulrike von Luxburg

To be discussed in exercise groups on May 19-21

Exercise 1 (Primal hard margin SVM problem, 1+3 points) Given training data (Xi, Yi)i=1,...,n

with Xi ∈ Rd and Yi ∈ {−1,+1} the primal hard margin SVM problem is given as

min
w∈Rd,b∈R

1

2
‖w‖2

Yi(w
TXi − b) ≥ 1, i = 1, . . . , n

(1)

(a) Recall the meaning of a hyperplane in canonical representation. Show that any solution of (1)
gives rise to a hyperplane in canonical representation.

(b) Assume the data is linearly seperable, that is there exists a solution of (1). Show that this
solution is unique.

Linear Programming (LP): A linear program is a special case of a convex optimization problem.
We want to optimize a linear objective function, subject to linear constraints. For example, consider
the following linear program:

minimize 4x1 + 3x2 − x3
subject to −x1 + x2 ≤ 1

4x1 − 2x2 + 3x3 ≤ −2

−2x2 − 3x3 + 4 ≤ 0

and xi ≤ 0 ; i = 1, 2, 3

We can rewrite this linear program in a standard form

minimize cTx

subject to Ax ≤ b
and x ≤ 0

(2)

where x = (x1, x2, x3)T ∈ R3, A =

−1 1 0
4 −2 3
0 −2 −3

, b =

 1
−2
−4

 and c =

 4
3
−1

.

Exercise 2 (LP in standard form, 2 points) Make a transformation of the variables such that
you can write the following linear program in the standard form (2). Determine the corresponding
matrix A and the vectors c and b.

minimize x1 − 2x2 + 4x3

subject to −x1 + x2 ≥ 1

3x1 + 2x3 ≤ −1

−2x1 − 5x3 + 4 ≤ 0

x1 + x2 + 8x3 ≤ 10

and x1, x2 ≤ 0

x3 ≥ 0

Web page: http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
teaching/2014-ss-vorlesung-ml/
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Exercise 3 (LP and its dual, 2+1 points) We want to derive the Lagrangian dual problem
for the linear program (2). We assume x, c ∈ Rd, A ∈ Rn×d, b ∈ Rn. First form the Lagrangian

L(x, λ1, λ2) = cTx+ λT1 (Ax− b) + λT2 x

where λ1 ∈ Rn and λ2 ∈ Rd are vectors of Lagrange multipliers.

(a) For any pair (λ1, λ2) ∈ Rn × Rd determine

g(λ1, λ2) = inf
x∈Rd

L(x, λ1, λ2).

g is called the Lagrange dual function. Hint: In particular, this requires to determine the pairs
(λ1, λ2) for which infx∈Rd L(x, λ1, λ2) = −∞.

The Lagrangian dual problem is given by

maximize g(λ1, λ2)

subject to λ1, λ2 ≥ 0

(b) Show that in our case the dual problem can be written as a linear program. (You do not have
to rewrite it in standard form (2)).

Optimization in MATLAB: For the following, we highly recommend to use the CVX optimi-
zation package (read prepare05.pdf for an introduction to this package - available on the course
webpage). However, in principle you could also use the MATLAB functions linprog and quadprog.

Exercise 4 (Solving a linear program, 3 points) Solve in MATLAB the linear program

minimize cTx

subject to Ax ≤ b
(3)

where A =

 −1 −1
−0.5 −1
−2 −1

, b =

−4
−2
−4

 and c =

[
1
1

]
. Then solve the program (3) with A and b

replaced by

Ã =


−1 −1
−1 −1
−0.5 −1
−2 −1

 , b̃ =


−2
−4
−2
−4

 .
Do you get the same solution? What would you expect? Try to solve the system by hand and
explain.

Exercise 5 (SVM cancer detection, 4 points) In this exercise you should learn a (soft margin)
SVM that classifies cancers as either benign (-1) or malignant (+1) depending on the characteristics
of sample biopsies. Load the patients data from cancer data2014.mat (available on the course
webpage). For every patient, 9 attributes are measured:

1- Clump thickness 2- Uniformity of cell size 3- Uniformity of cell shape 4- Marginal
Adhesion 5- Single epithelial cell size 6- Bare nuclei 7- Bland chomatin 8- Normal
nucleoli 9- Mitoses.

For C ∈ {0.01, 0.1, 0.5, 1, 5, 10, 50} train a SVM classifier on the training data and evaluate it on
the test data. Plot the train and the test error (with respect to the 0-1-loss) as a function of C.
What is the effect of choosing a large C on the training error? Does this effect coincide with what
you are expecting?
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Exercise 2

Consider the optimization problem given by

min x1 − 2x2 + 4x3
subject −x1 + x2 ≥ 1

3x1 + 2x3 ≤ −1
−2x1 − 5x3 + 4 ≤ 0
x1 + x2 + 8x3 ≤ 10

x3 ≥ 0 x1, x2 ≤ 0

it can be written in the standar form, calling x̃3 := −x3
min x1 − 2x2 − 4x̃3

subject x1 − x2 ≤ −1
3x1 − 2x̃3 ≤ −1
−2x1 − 5x3 ≤ −4
x1 + x2 − 8x̃3 ≤ 10
x1, x2, x̃3 ≤ 0

Then c =
(
1 −2 −4

)T
, b =

(
−1 −1 −4 10

)T
and

A =


1 −1 0
3 0 −2
−2 0 5
1 1 −8


attaining the standar form

min cTx
subject Ax ≤ b

xi ≤ 0

Exercise 3

In mathematical optimization theory, duality means that optimization problems may be viewed from either
of two perspectives, the primal problem or the dual problem (the duality principle). The solution to the dual
problem provides a lower bound to the solution of the primal (minimization) problem. However in general
the optimal values of the primal and dual problems need not be equal. Their di�erence is called the duality
gap. Consider

L(x, λ1, λ2) = cTx+ λT1 (Ax=b) + λT2 x

=
(
cT + λT1 A+ λT2

)
x=λT1 b

this is a linear funtion on x. We have that

inf
x
L(x, λ1, λ2) =

{
=λT1 b if

(
cT + λT1 A+ λT2

)
= 0

=∞ otherwise

the dual problem would be

max =λT1 b
subject λ1, λ2 ≥ 0(

cT + λT1 A+ λT2
)
= 0
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Figure 0.1. Feasible Space

Exercise 4

The solution for the problem involving c =
(
1 1

)T
, b̃ =

(
−2 −4 −2 −4

)T
has the same solution

because the new constraint (�rst row of A) is redundant.

x2 ≥ −x1 + 2, x2 ≥ −x1 + 4, x2 ≥ −0.5x1 + 2, x2 ≥ −2x1 + 4

As the objective function
s = x1 + x2

has the same slope as the border of the feasible region it is straightforward to note that the minimum
corresponds to

4 = x1 + x2

which is non unique. If the problem is well posed the minimum of a linear programming problem is attained
in one of the vertex of the polygon given by the constraints (the feasible area).
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CVX optimization package for MATLAB (unfortunately NOT compatible with Oc-
tave)

CVX is a Matlab-based modeling system for convex optimization. CVX turns Matlab into a
modeling language, allowing constraints and objectives to be specified using standard Matlab
expression syntax.
You can download CVX from http://cvxr.com/cvx/download/. Installation is relatively simple:
unpack the distribution to an empty directory, and then run cvx setup in this directory from the
MATLAB command line. For more information, see http://cvxr.com/cvx/doc/install.html.
After installation, you can use CVX commands in your matlab files. To use CVX effectively, you
need to know at least a bit about convex optimization. To use CVX for solving your optimization
problem, you need to

• check if your problem indeed is a convex optimization problem. CVX is not meant to be a
tool for checking if your problem is convex

• declare optimization variables, describe the objective function and describe the constraints
according to the follwing scheme

cvx_begin

variable x(n)

minimize ( f(x) )

subject to

g(x) <= 0

h(x) == 0

cvx_end

Example 1: Consider the following convex optimization problem

minimize ‖Ax− b‖2
subject to Cx = d

‖x‖∞ ≤ e

The following code segment generates and solves a random instance of this model:

m = 20; n = 10; p = 4; A = randn(m,n); b = randn(m,1);

C = randn(p,n); d = randn(p,1); e = rand;

cvx_begin

variable x(n)

minimize( norm( A * x - b, 2 ) )

subject to

C * x == d

norm( x, Inf ) <= e

cvx_end

Example 2: You can use CVX to solve soft margin SVM classification problems

min
w,ξ,b

1
2‖w‖

2 + C
m

∑m
i=1 ξi

yi(w
Txi + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m
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To solve this problem in matlab using CVX, first you need to initialize C, n,m, vector y and matrix
X. Then

cvx_begin

variables w(n) b xi(m)

minimize 1/2*sum(w.*w) + C*sum(xi)/m

y.*(X*w + b) >= 1 - xi;

xi >= 0;

cvx_end

- You can keep CVX quiet during optimization by cvx quiet(true);

- Documentation: http://cvxr.com/cvx/doc/CVX.pdf
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