
Assignment 7

Machine Learning, Summer term 2014, Ulrike von Luxburg

To be discussed in exercise groups on June 2-4

Exercise 1 (Direction of principal components, 1 point) Below are a number of 2D-data
sets. Plot the two principal components.

Exercise 2 (Interpreting principal components, 2 points) A carsharing service runs a
survey among 1000 students, who provide information concerning their 1- income, 2- distance they
cover by car per month, 3- distance they cover by bike per month, 4- distance they cover by public
transport per month, 5- distance they cover by foot per month. Then they run a PCA on the data.
Provide answers to the following questions:

- What would it mean if a single eigenvector covered 95% of the total data variance?

- How would you interpret the result if the eigenvector v1 = [0, 0, 1,−1, 0] covers 90% of the
total data variance?

- Why might it be necessary to rescale the data before running PCA in order to obtain a
sensible result?

Exercise 3 (Generating samples from a Gaussian distribution, 0.5+0.5+0.5+1+0.5
points) You are given the mean µ and the covariance matrix Σ of a d-dimensional normal density
N (µ,Σ) and you want to sample n points from this density. Assuming that Σ is positive definite,
the following MATLAB code will do this for you:

S1 = chol(Sigma); X = repmat(mu,n,1) + randn(n,d)*S1;

The command S1 = chol(Sigma) generates an upper triangular matrix S1 which satisfies
Sigma=S1’*S1. This decomposition is called the Cholesky decomposition. An alternative method,
which also works when Σ is only positive semi-definite, is to decompose Σ to eigenvectors and
eigenvalues by [V,D] = eig(Sigma) and then form S2 by S2=V*sqrt(D). However, the Cholesky
decomposition is numerically more stable and computationally faster than eigen decomposition
method.

(a) Show that in eigen decomposition, Σ = S2 · S2′.

(b) Generate n = 2000 points in 3 dimensional space from a Gaussian distribution with mean
mu=[0,0,0] and Covariance Sigma=[2 0 0;0 1 0;0 0 4]. Plot it with plot3.

(c) What are the eigenvalues and eigenvectors of the covariance matrix Sigma?

Web page: http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
teaching/2014-ss-vorlesung-ml/

Login: “machine”, Password: “learning”

(d) Assume you know eigenvalues and eigenvectors of your covariance matrix:

Λ =

[
3 0
0 1

]
, V =

√
2

2

[
1 1
−1 1

]
.

Generate n = 400 points in 2 dimensional space from a Gaussian distribution with mean zero
and covariance matrix corresponding to these eigenvalues and eigenvectors (Σ = V ΛV ′). Plot
the points and guess the approximate direction of principal components in the figure.

(e) Add the eigenvectors in V to your plot. Compare your guessed directions with these eigenvec-
tors.

Exercise 4 (PCA, 2+1 points)

(a) Implement PCA in MATLAB. Do it in a three line MATLAB code: Subtract the mean of your
data, calculate the covariance matrix C, and find its eigenvalues and eigenvectors using the
MATLAB command [V,D] = eig(C).

(b) To test your code (if you could not solve part (a), you can use the MATLAB command
pca) generate 500 samples from a Gaussian distribution with mean µ = [1, 1] and covariance
Σ = [2,−1;−1, 2]. For generating the points you can either use your code from Exercise 3, or
use the MATLAB command normrnd. Apply your PCA code on this data and compare the
result with the eigenvectors of the covariance matrix Σ.

Exercise 5 (PCA on USPS data, 1+3 points)

(a) Apply the PCA method on images of digits 5 from USPS dataset (use the training data of
the complete dataset — available on the course webpage from Assignment 4). Plot the first
and the second principal components as 16x16 grayscale images. You can either use your PCA
implementation from Exercise 4 or the MATLAB command pca.

(b) Choose three images of digits 5 from USPS dataset at random and project them onto 1- the
first principal component, 2- the first and the second principal component in R256 (i.e. as a
result you should obtain vectors in the original space — this is View 1 in the notation of the
lecture notes). Create a 3 × 3-subplot (use help subplot in case you do not know how this
works) showing the original images in the first row, the results from 1 in the second row, and
the results from 2 in the third row (using imagesc).

Exercise 6 (Isomap on USPS data, 1+1+1 points) In this exercise you will implement the
Isomap method to embed digits 1,2,3,4 from USPS dataset into R2. The code for building kNN
graph and the Isomap algorithm itself is provided on the course web page.

In preparation for the following, load the data from usps train complete.mat (available on the
course webpage from Assignment 4). Select 300 examples from each of digits {1, 2, 3, 4} and put
them in variable X. Put the corresponding labels in Y.

(a) Set the connectivity parameter in the kNN graph to k = 10 and use the following code to
plot the embedding in 2 dimensional space using Isomap. Read the manual of the command
scatter to understand how it works.

A = buildKnnGraph(X,k);

D = graphallshortestpaths(A,’Directed’, false);

xy = Isomap(D,2);

figure;

scatter(xy(:,1),xy(:,2),10,Y,’filled’);

(b) Play with the parameter k. Describe the effect of the parameter on the embedding.

(c) Project the data onto the first two principal components of PCA in R2 (i.e. as a result you
should obtain vectors in R2 — this is View 2 in the notation of the lecture notes). Plot the
embedding, again using the command scatter. You can either use your PCA implementation
from Exercise 4 or the MATLAB command pca to perform PCA.

2

1

Table of Contents
... 1
Part (a) ... 1
Part (b) ... 1
Part (c) ... 2
Part (d) ... 3
Exercise 4 ... 3

% Machine Learning Assignment 3

clear all; close all; clc;

Part (a)
%[V,D] = eig(Sigma)

Part (b)
% the Cholesky decomposition is a decomposition of a Hermitian,
% positive-definite matrix into the product of a lower triangular matrix
% and its conjugate transpose,

% R = chol(A) produces an upper triangular matrix R from
% the diagonal and upper triangle of matrix A, satisfying
% the equation R'*R=A.

% B = repmat(A,m,n) creates a large matrix B
% consisting of an m-by-n tiling of copies of A.
% each d dimensional point is a row
d = 3; n = 2000; mu = [0, 0 ,0]; Sigma=[2 0 0;0 1 0;0 0 4];
S1 = chol(Sigma); X = repmat(mu,n,1) + randn(n,d)*S1;

figure(1); plot3(X(:,1), X(:,2), X(:,3), '.'); grid on

2

Part (c)
[V D] = eig(Sigma)

V*D*V' % Is equal to Sigma

V =

 0 1 0
 1 0 0
 0 0 1

D =

 1 0 0
 0 2 0
 0 0 4

ans =

 2 0 0
 0 1 0
 0 0 4

3

Part (d)
A =[3 0;0 1];%eigenvalues of cov matrix
V =(1/sqrt(2))*[1 1;-1 1];% eigen vectors cov matrix
d = 2; n = 400; mu = [0 0];
Sigma = V*A*V';
S1 = chol(Sigma); X = repmat(mu,n,1) + randn(n,d)*S1;

figure(2);hold all;
plot(V(:,1));% 1rst eigenvector
plot(X(:,1),X(:,2),'.');

Exercise 4
Each row represents a d dimensional point

d = 2; n = 500; mu = [1, 1]; Sigma=[2 -1 ;-1 2];
S1 = chol(Sigma); X = repmat(mu,n,1) + randn(n,d)*S1;

d= size(X,2);
x_mean = mean(X,2); % mean of columns of matrix X (horizontal)
Xc = X-x_mean*ones(1,d); % centered data matrix
C= (1/n)*Xc'*Xc; % covariance matrix

4

C= cov(Xc); % built-in command produces the same thing
[V,D] = eig(Sigma)

figure(3);hold all;
plot(V(:,1));% 1rst eigenvector
plot(V(:,2));% 2nd eigenvector
plot(X(:,1),X(:,2),'.');
legend ('1rst eigvect', '2nd eigenvect')

V =

 -0.7071 -0.7071
 -0.7071 0.7071

D =

 1 0
 0 3

Published with MATLAB® 7.14

MACHINE LEARNING- ASSIGNMENT 7

VICTOR BERNAL ARZOLA

Exercise 1

Figure 0.1. First 2 components

Exercise 2

• Data is spread along this direction mostly.
• Negative correlated.
• Same scale (same units) allow us to compare and interpret properly.

Exercise 3

In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian,
positive-de�nite matrix into the product of a lower triangular matrix and its conjugate transpose.

Solving a linear system. The Cholesky decomposition is mainly used for the numerical solution of linear
equations Ax = b. If A is symmetric and positive de�nite, then we can solve Ax = b by �rst computing the
Cholesky decomposition A = LLT , then solving Ly = b for y by forward substitution, and �nally solving
LTx = y forx by back substitution. A closely related variant of the classical Cholesky decomposition is the
LDL decomposition.

Generating correlated Gaussian numbers. A general way to generate correlated (normal distributed)
random numbers with a given correlation matrix C is to generate uncorrelated numbers R and then multi-
plying them with L the Cholesky matrix of C . Suppose X is build of uncorrelated normal random vector
with mean zero

cov (X,X) = E
[
XXT

]
=

 1 0
: :
0 1

and that we want to generated correlated random vector with correlation matrix C, that using Cholesky
decomposition is written as

C = LLT

then LX has the desired covariance given by

cov (Z,Z) = E
[
(LX)XTLT

]
= LE

[
XXT

]
LT = LLT

1

MACHINE LEARNING- ASSIGNMENT 7 2

Covariance Matrix. The covariance matrix (also called the variance-covariance matrix) of an n×1 random
vector is an n×n matrix whose i, jth element is the covariance between the ith and thejth random variables.
Lets de�ne a matrix of observations where each row is a experiment (or individual) consisting of d features
(dimensions).

X =

 a1 .. ad
b1 : bd
n1 ... nd

so the covariance

⇒ cov (X,X) =
(
XXT

)
nxn

interindividual

⇒ cov (X,X) =
(
XTX

)
dxd

interdimensional

As we are interested in the information of each of the d dimensions (features) we proceed with the second.

Fact. When the matrix X is a Hermitian matrix (resp. symmetric matrix), eigenvectors of X can be chosen
to form an orthonormal basis of Cn (resp. Rn). Under such circumstance P will be a unitary matrix (resp.
orthogonal matrix) and P−1 equals the conjugate transpose (resp. transpose) of P .

Orthogonal Unitary

OO∗ = I = O ∗O UU+ = I = U+U
O is a real square matrix U is a complex square matrix

O∗is the transpose U+ is the conjugate transpose

Figure 0.2. Unitary vs Orthogonal Matrix

Lets consider the transformation change of basis of a matrix X

X =

[
u v
: :

](
λ 0
0 µ

)[
u v
: :

]−1

where u, v are eigenvectors. For every n× n real symmetric matrix (e.g. covariance matrix), the eigenvalues
are real and the eigenvectors can be chosen such that they are orthogonal to each other. An Orthogonal
matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors. So the
matrix of eigenvectors P is orthogonal then its inverse P−1 is equal to its transpose PT

V TV =

(
v1 ...
u1 ...

)(
v1 u1
: :

)
=

(
vT v vTu
uT v uTu

)
= 1

taking the transpose (
V TV

)T
= V V T = 1T

⇒ V T = V −1

Thus a real symmetric matrix X can be decomposed as

X =

[
u v
: :

](
λ 0
0 µ

)[
u v
: :

]T
which resembles the Cholesky LDL decomposition.

	blatt07_2014
	Ex3
	Table of Contents
	
	Part (a)
	Part (b)
	Part (c)
	Part (d)
	Exercise 4

