CHAPTER 8

Brownian Motions

A B U B B B SR B R 2 RIRE R AR

o 1828 R. Brown: BAZEWM7E/KHHIIEE).

e 1905 A. Einstein: fist mathematical theory about Brownian motion
e 1906 M. von Smoluchowski: same model as Einstein.

e 1923 N. Wiener: putting Brownian motion into the measure-theoretic framework.

8.1. Scaled random walk

TEST 4B Brownian motion 2 8, 1% EE symmetric random walk.

Construction of a symmetric random walk.
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the probability of H (head) = the probability of T (tail) = 3.

The successive outcome of the toss w = wy wy w3 + -+ w, ---, where w, is the outcome of

the nth toss. The sample space €2 is given by

Q={w:w=wjwy -+, wj=HorT}
Let
1, ifw,=H
Xp(w) =
-1, ifw, =T

and (X,,)n>1 is independent.
177
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Definition 8.1. Define

k
My = Y Xi, k=123,
i=1

The process (My)r>o is a symmetric random walk.

Proposition 8.2. A random walk has independent increments, i.e., any 0 =ty < t; <

to <o <tym=1t (t; € N), the increments of the random walk
Mtp Mt2 - Mt17 Mt3 - Mtg; e 7th - th,1

are independent.

1 fIEREE A A, AR e R R AT

Remark 8.3. The random variable

tg

My, — M, , = Y X

=t _1+1

has expectation 0 and variance t — t5_1

PROOF. Since

we have
123
]E[Mtk Mtk 1] Z E[XZ] =0,
i=t_1+1
tr
Var(M,, — M,, ) > Var(Xp) =t — ty
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due to Proposition 8.2. 0
Theorem 8.4. (My,) is a martingale with respect to (F7).
PRrROOF. Since (X,,),>1 is independent,
E[My — M1 Fi ] = E[Xi| 7] = E[X;] = 0.
0

Definition 8.5. Fixed a positive integer n, define the scaled symmetric random walk,

1
NG

Provided nt is an integer. If nt € N, define Wt(n) by linear interpolation, i.e.,

W = — M,

W = ([nt] + 1 — nt)W i) + (nt — [nt) W,

n n

EBEEEEMUNS MR, SHERKEREZ ST 8. R Figures 8.1, 8.1 J 8.1.

FIGURE 8.1. (M,): REEBEEEHE.

(W) BRBEERIZEAR 2. EFBRBIA R N 1/v/n, BRBIRSERE R 1/n. HRH—H
I E SRR
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FIGURE 8.2. (W')): % M, REHACEN AT,

4 ) 2-1/2
3 . 2-1/2
2 . 2-1/2

2-1/2

_2-1/2_
_2_2-1/2 B
_3_2-1/2 |

Ficure 8.3. (W) ETFBKEIHI R/ INE 1/v2, BRBIRISER SR 1/2.
] — 5% F B 4B 2

Proposition 8.6. The scaled symmetric random walk has independent increments.

PrROOF. If 0 =ty < t; <ty <--- <t, =tsatisfy nt; € N for all ¢, then

W

ot —wm o w —w

Wt(,:) _ W(”)

tm—1
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are independent. ZA—MRIIEIL (nt; ¢ N) BUHLEBAERE, VHD case BlEw. FEEM
WA T O

Theorem 8.7 (Central Limit Theorem). Fized t > 0. As n — oo, the distribu-

tion of scalar symmetric random walk (Wt(”)) evaluated at time t converges to N'(0,t) in

distribution.

8.2. Brownian motions

Let (2, F,P) be a probability space.

Definition 8.8. A stochastic process W = (W,);>¢ is called a standard Brownian motion

(BM) if

(i) Wy =0 P-a.s.

(ii) (W,) has independent increments, i.e., for 0 <t <ty < -+ <y,
Wt17 Wtz - VVt17 Wt3 - VVtza (XS] th - th,1

are independent

(iii) For 0 < s <t, Wy — W5 ~ N(0,t — s).
Remark 8.9. For all ¢t > 0, W, ~ N(0,?).

Remark 8.10. Difference between Brownian motion (W;) and scaled symmetric ran-

dom walk (W ™).

(1) The scaled random walk has a natural time step 1/n and is linear between these

time steps.
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(2) The scaled random walk (Wt(")) is only approximated normal for each ¢, but

Brownian motion is exactly normal.

Lemma 8.11. For 0 < s <'t, the covariance of Wy and Wy is s. Fxplicitly,

E[W,W,] = s A t.

PrOOF. Since E[W ] = E[W;] = 0, the covariance of Wy and W, is given by

E[WsWt] = E[Ws(Wt - Ws + WS)] = E[Ws(Wt - Ws)] =+ ]E[Wf]

= E[W,EW, — W] +EWZ] =0+s=s

due to the independent increments of Brownian motion. O]

Proposition 8.12. The moment generating function of Brownian motion (for the m-

dimensional random vector (Wi, Wiy, ..., Wy ) ) is given by

E [eXp (u1Wt1 + Uth2 + -4 Uthm)]

1 1
= exp (§(u1 tuz+ -t Um)Qtl + §(U2 +us+--- —|—um)2(t2 —t1)

N

1
(um—l + um)2(tm—1 - tm—2) + 5 ugn(tm - tm—l))
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Proor. We prove here only the case m = 3. For 0 < t; < ty < t3, due to the

independence of Wy,, W, — W,,, W, — W,,, we have

E [exp (ulVth + UQWt2 + U3Wt3)]
= [E [exp (Ug(Wts — WtQ) -+ (UQ -+ Ug)(Wt2 — th) -+ (u1 + (5) -+ ug)wtl)]
= E[exp (us(Wiy — Wi,))| - E [exp ((ug + uz)(Wi, — Wi,))] - E [exp (w1 + uz + uz)wy, )]
1, 1 2 1 2
= exp 5 uz(ts — t2) | exp 5 (ug + u3)(ta — t1) ) exp 5 (uy + ug + u3)“ty
1 2 1 2 1,
= xp |y (ur + ug +uz)™t + 5(“2 +u3)*(ta — t1) + 5“3(153 —t2) ).

O

Definition 8.13. A filtration for Brownian motion (or Brownian filtration) is a col-

lection of o-algebra F;, t > 0, satisfying

(i) (information accumulates) F, C F; for all s < ¢;
(ii) (adaptivity) For each t > 0, W; is F;-measurable;

(iii) (independent of future increment) For 0 < s <t, W; — Wy is independent of Fy.
Example 8.14. F = (FV) is a Brownian filtration.

Theorem 8.15. Brownian motion is a martingale.

ProoF. For 0 < s < t,

E[Wi|Fs] = E[W; — W,|Fs| + E[W|F] = E[W; — W] + W,

= 0+ W,=W,.
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Exercise

(1) Let (W;) be a one-dimensional standard Brownian motion. Check whether the
following processes (X;) are martingales with respect to (F;):

(a) Wt + 4t.

(b) X
t

(c) Xy =t Wt—2/ sW ds.
0

(d) X wW® | where (Wt(l)) and (Wt(z)) are two independent Brownian

motions.

(2) Let (W;) be a 1-dimensional standard Brownian motion.

(a) For fixed ty > 0, prove that
Wt = Wtoth — Wto; t Z 0

is a Brownian motion.

(b) Let ¢ be a constant, prove that
Wt = - c2t
c

is also a Brownian motion.

(c) Let o be a constant. Show that

B fexp (oW; = W) = exp (5% - )

for 0 < s < t.
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8.3. The Brownian sample path

Theorem 8.16. (1) There is a continuous version of Brownian motion.!

(2) For almost every w € Q, the Brownian sample path W (w) is nowhere differentiable.

(3) For almost every w € Q, the Brownian sample path W (w) is monotone in no
interval.

(4) For almost every w € Q, the set of points of local maximum for the Brownian
sample path W (w) is countable and dense in [0,00), and all local mazima are

strict.

Theorem 8.17 (Law of Iterated logarithm). For almost every w € Q, we have

Wi(w)

1) limsu =1
@ £10 P V/2tloglog (1/t)
lim inf Wiw) =—
tlo - /2tloglog (1/t)
(2) limsup Wiw) =1,
lim inf Wiw) =—

t—oo /2t loglog (1/t)

TE € P E B AERE I Brownian motion [ERVEIE. B R, BN EHE ¢ R, 5
t fR/INE, Brownian motion & /1A E Wl 1K 8L 2 1, 18 F B S EBURE A sample
path K%, 7F ¢ IR K, 8¢ ¢ 1R /NEF, Brownian motion I8¢ T [T & 3 A & # 4
EREMEBE S TR, REZBHIEEN T £v/2tloglogt B +./2tloglog 1/t Z H.
V2tloglogt Ed \/Wogl/t AYE ] &, Figure 8.3 & Figure 8.3.

Theorem 8.18. The quadratic variation of the standard Brownian motion is given by

(W), =t P-as  forallt>D0.
LA LL LA #% 744/ & 18 Brownian motion 285 #A continuous path!!! B Z &AM AL E P4 EH

Brownian motion & B € 75 H A s &1 R K.
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FIGURE 8.4. The graph of \/2tloglogt when t is large
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FicUrE 8.5. The graph of /2t log log% when ¢ is small

Proor. TEiE AT MEARIITERK quadratic variation.

Method 1: Let IT = {0 = to, t1,t2,- - - , t,} be a partition of [0,¢]. Define

n—1
QH - Z(WtiJrl Wtz)z
=0
Then
n—1 n—1
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and

=0

E[(@Qun—-1)?% = E [(Z(Wml — Wi, )? = (tig1 — tz’)) ]

= ZE [ b — W) = (tisa — ti))z]

+22E 1+1 - ‘)2 - (tz—l-l )) ((Wtj+1 - Wtj)2 - <tj+1 - tj))] ’

1<J

For ¢ < j, since Wy, — W4,

?

and W, — W, are independent,

E [((M/tz+1 th) (tiv1 — )) ((Wt]+1 Wt]) (t j+1 — 1 ))}

= E[(Wi,, — W) (W, Wi,)?] = (tigr — t)E[(W;

1 J

i+1 J+1 Wtj)2]

—(tjp1 = t)E[(Weyy — We)?] + (bir — i) (41 — ;)
= E [(WtiJrl - Wti)z] -E [(Wtj+1 - Wtj)2:| - (ti-i-l - ti)(tj+1 - tj)
—(tj1 — ) (i — 1) + (tigr — i) (tja — t5)

= (tigr —ta) (i1 — t5) — (tj1 — t5) (L1 — 1)

= 0.
Thus,
n—1
E[(Qu—1)%] =) (E[(Wi,, — W) = 2(tiga — t)E[(Whry, — Wi )] + (tir — 1)?) -
i=0
Since

1 &0 e
E [(Wti+1 - Wti)4] = / :LAG Henm dp = 3(ti+1 - ti)27
27T(ti+1 — tl) —0o0
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we get

n—1

E[(Qn—t)*] = (B(tigr — t:)* = 2(tips — ti) (tixa — ti) + (tig1 — 1)°)

™

Il
o

)

—_

n— n—1
= 2 (tigr —1)* <2 |T(tiga — t;) = 2t 1T — 0,
=0

i

Il
=)

as ||IT|| — 0, where ||II|| = max |t;11 — t;|. Hence,

lim E[(Qp —1t)?] =0,

[TT]]—0
ie.,
lim Qp=t in L%
1] —0

M| A subsequence convergence FIIHE, FA 7] LIFEE] almost everywhere convergence.

Method 2: Claim : W2 — t is a martingale.

For 0 < s <,
EW?2 —t|F,] = E[(W, — W, +W,)?F]—t
= E[(W, — W) + 2W, (W, — W,) + W2 F,] —t
= E[(W, = W,)?|F,] + 2E[W (W, — W,)|F] + E[WZ|F] —t
= E[(W, — W )?] + 2W,E[W, — W, + W2 —t
= t—s+0+W2—t=W?—s.

Due to Doob-Meyer decomposition, we have (W), = t. O

Remark 8.19. Let II = {to,t1,%2, -+ ,t,} be a partition of [0,¢]. Then

n—1

lim Wi, — W) =t,
||H||—>OZO< tH— tz)

1=

n—1

g D (Wi, = Wi)(tin — 1) =0,
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n—1
”Hlﬁxi();(tm — ;)2 =0.
We write informally
dW, - dW, = dt,
dW, - dt =0,
dt - dt = 0.

8.4. Exponential martingales

— % B ZE (B A% A AN & 18 Brownian motion — A IEA &. K b 3 M A8 % H &
% preserving Brownian motion ) monotonicity, X 46 %f 5 1F i), 5 i BE A0 A8 1 F &
exponential function. {EE 2 H BRI EE B RIRERE, FfA 1A % b i B a0 B,
75 Hi exponential function W8? & 5E5EEE binomial model. 41 Figure 8.4. I A EEfE
PEZs 1 HTEUL. FUMERTE R — TR R A& 1/n BUIRTL.

S,U°
S,u

S, S,ud
S,d

S,

FIGURE 8.6. Binomial model

Suppose the interest rate r = 0,

o o
n=1 s dnzl__7
u +\/ﬁ Jn
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where o is a positive constant (called volatility).

Assume that nt € N, that means that up to time ¢, it is an ni-period model. The

risk-neutral probability measure in the one-period model is given by

_ 1—d, 1-(1-7%) 1
p: = > = = —
un_dn (1"_\/_5)_(1_\/_5) 2
~ Uy — 1 (1"‘\/%7)_1 1
q: = =

up—dy (I+%)—(1-%) 2

Just like to toss a fair coin. This implies that we may regard the nt-period model as

tossing a fair coin nt times.

Suppose
H,; = the number of heads in the first nt coin tosses.
T,: = the number of tails in the first nt coin tosses.

M, = the position of the 1-dimensional random walk. Clearly, we have

Hnt + Tnt = nta

Hnt - Tnt = Mnt-

Thus,
t+ M,
H, — %
Tnt _ nt — Mnt '
2

This implies that the stock price at time ¢ is given by

nt+Mpy nt—Mp¢
2 o 2
S("):S Hnt jInt — g 1 g 1 — —
coT G = e (BT Vi

Theorem 8.20. As n — o0, the distribution of St(") converges to the distribution of

2
Sy = Sy exp (aWt - %)

where Wy ~ N(0,1)
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Proor. Claim : the distribution of log St(n) converges to the distribution of log.S;,

ie.,

log S™ — log S, in distribution.
t

log St(n) = logSy+ —5 log (1 +

02 3 (o} 3
= log Sy +nt (—% + O(n_Z)) + My, <— + O(n‘z))

2
t 1 n — n
= log Sy — % +0(n72) + oW + Oo(n YW,

which converges in distribution to

2
/
log Sy + oW, — % = log S,.

Definition 8.21. Let (IV;) be a Brownian motion with filtration (F;), o € R. The

exponential martingale corresponding to o is defined by

o2
Zy = exp (O’Wt — 775)

(A special case of geometric Brownian motion)

Theorem 8.22. (Z;, F;)i>o is a martingale.
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ProOOF. For 0 < s <'t,

ot
]E[Ztyfs] = E exp O'Wt—7 fs

= Elexp(cW})|F] - exp <_U_2t>

2
= Elexp (oc(W; — W) + oW,)|F,] - exp (—%t)
= Blexp (o(W; = W)I£] -exp oW - exp (-5 )
Since
1,
Blexp (7 (Wi ~ W] = Blexp (o7 = W)l = ex 5070 =)
we have

E[Z,|Fs] = exp (%Oz(t - 8)) -exp (o W) - exp (_U_%)

8.5. d-dimensional Brownian motions

Definition 8.23. A d-dimensional stochastic process B = (B;);>0 = ((B}, B2, -+, BY))i>0

is called a d-dimensional Brownian motion if every (Bj);>o is a 1-dimensional Brownian

motion and (B}), (B?), ..., (BY) are independent.

Remark 8.24. A d-dimensional Brownian motion is a d-dimensional continuous mar-

tingale with cross variation.

(B', B7); = §;jt, for 1<4,j<d.
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Theorem 8.25 (Lévy Theorem). Let M = (MY M? --- M%) be a d-dimensional

continuous local martingale with respect to (F;) and My = 0 P-a.s. If
(M', M), = 6t , for 1<4i,j<d, (8.1)
then M s a d-dimensional Brownian motion.

Remark 8.26. The condition ”continuity” is important. %1 Poisson process Bl %

W2 (8.1) Z martingale, HEHIR Poisson process i N&1E martingale.

Theorem 8.27. Let M be a real-valued continuous local martingale with respect to
(F:) and My = 0 P-a.s. with

lim (M); = oo.

t—o00

For each t > 0, define the stopping time
7, = inf{s : (M), > t}
Then (M,)t>0 is a Brownian motion with respect to (F,).

Remark 8.28. Let B be a d-dimensional Brownian motion starting from 0.

(1) If d = 1, By(w) visits 0 infinite many times.
(2) If d = 2, By(w) does not hit the origin after time 0, however it hits every ball
with center at the origin.

(3) If d > 3, | By(w)| — o0 as t — oo.

Exercise

(1) Definition: A Poisson process with intensity A > 0 is an adapted, integer-valued

cadlag (right-continuous and left limit exists) process N = (Ny, F;)i>0 such that
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(1) NO = 0, IP’—a.s.;
(ii) Ny — N, is independent of Fy, for 0 < s < t;
(iii) N; — N, is Poisson distributed with mean A(t — s).

Given a Poisson process N with intensity A, define the compensated Poisson process

Mt — Nt —>\t

(a) (M, F;) is a martingale.
(b) Is the Poisson process N = (Ny, Fi)i>0 a martingale, submartingale or su-
permartingale?
(¢) Show that the quadratic variation of the compensated Poisson process M is
given by (M), = \t.
(2) Let (W;) be a d-dimensional Brownian motion starting at 0 and let U € R?*? be

a constant orthogonal matrix, i.e., UUT = I. Prove that
B, :=UB,

is also a Brownian motion.



