CHAPTER 8

Brownian Motions

布朗運動式個在財務數學上應用得相當廣泛的隨機過程.

- 1828 R. Brown: 觀察花粉在水中的活動.
- 1905 A. Einstein: fist mathematical theory about Brownian motion
- 1906 M. von Smoluchowski: same model as Einstein.
- 1923 N. Wiener: putting Brownian motion into the measure-theoretic framework.

8.1. Scaled random walk

在介紹 Brownian motion 之前, 我們先看看 symmetric random walk.

Construction of a symmetric random walk.

重複丢擲一個公平的銅板, 此銅板正反面出現的機率相同, 亦即

the probability of H (head) = the probability of T (tail) =
$$\frac{1}{2}$$
.

The successive outcome of the toss $\omega = \omega_1 \omega_2 \omega_3 \cdots \omega_n \cdots$, where ω_n is the outcome of the *n*th toss. The sample space Ω is given by

$$\Omega = \{ \omega : \omega = \omega_1 \, \omega_2 \, \cdots, \, \omega_i = \text{H or T } \}$$

Let

$$X_n(\omega) = \begin{cases} 1, & \text{if } \omega_n = H \\ -1, & \text{if } \omega_n = T \end{cases}$$

and $(X_n)_{n\geq 1}$ is independent.

Definition 8.1. Define

$$M_0 = 0,$$
 $M_k = \sum_{i=1}^k X_i, \qquad k = 1, 2, 3, \dots$

The process $(M_k)_{k\geq 0}$ is a symmetric random walk.

<u>Proposition</u> 8.2. A random walk has independent increments, i.e., any $0 = t_0 < t_1 < t_2 < \cdots < t_m = t$ $(t_i \in \mathbb{N})$, the increments of the random walk

$$M_{t_1}, M_{t_2} - M_{t_1}, M_{t_3} - M_{t_2}, \cdots, M_{t_m} - M_{t_{m-1}}$$

are independent.

這個證明並不難,依其定義即可.

Remark 8.3. The random variable

$$M_{t_k} - M_{t_{k-1}} = \sum_{i=t_{k-1}+1}^{t_k} X_i$$

has expectation 0 and variance $t_k - t_{k-1}$

Proof. Since

$$\mathbb{E}[X_i] = 0,$$

$$\operatorname{Var}(X_i) = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = 1,$$

we have

$$\mathbb{E}[M_{t_k} - M_{t_{k-1}}] = \sum_{i=t_{k-1}+1}^{t_k} \mathbb{E}[X_i] = 0,$$

$$\operatorname{Var}(M_{t_k} - M_{t_{k-1}}) = \sum_{i=t_{k-1}+1}^{t_k} \operatorname{Var}(X_i) = t_k - t_{k-1}$$

due to Proposition 8.2.

Theorem 8.4. (M_k) is a martingale with respect to (\mathcal{F}_k^X) .

PROOF. Since $(X_n)_{n\geq 1}$ is independent,

$$\mathbb{E}[M_k - M_{k-1} | \mathcal{F}_{k-1}^X] = \mathbb{E}[X_k | \mathcal{F}_{k-1}^X] = \mathbb{E}[X_k] = 0.$$

<u>Definition</u> 8.5. Fixed a positive integer n, define the scaled symmetric random walk,

$$W_t^{(n)} = \frac{1}{\sqrt{n}} M_{nt},$$

Provided nt is an integer. If $nt \notin \mathbb{N}$, define $W_t^{(n)}$ by linear interpolation, i.e.,

$$W_t^{(n)} = ([nt] + 1 - nt)W_{\frac{[nt]}{n}}^{(n)} + (nt - [nt])W_{\frac{[nt]+1}{n}}^{(n)}.$$

這個定法看似不易理解, 電用圖形來看應該會好一點. 見 Figures 8.1, 8.1 及 8.1.

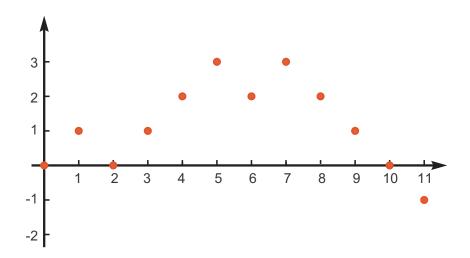


FIGURE 8.1. (M_k) : 只有在整數點有值.

 $(W_t^{(n)})$ 的想法則差不多. 上下跳動的大小為 $1/\sqrt{n}$, 跳動的頻率變成 1/n. 中間一樣用直線連起來.

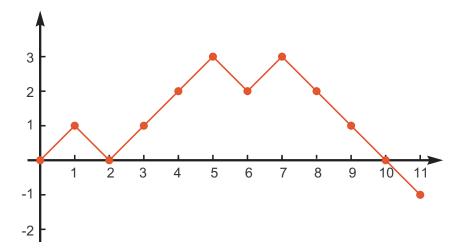


FIGURE 8.2. $(W_t^{(1)})$: 將 M_k 中間連起來即可.

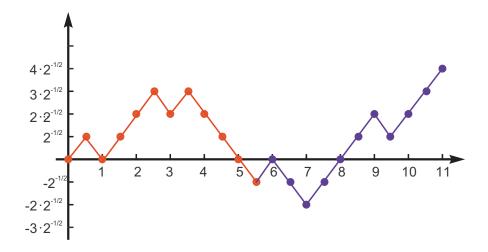


FIGURE 8.3. $(W_t^{(2)})$: 上下跳動的大小為 $1/\sqrt{2}$, 跳動的頻率變成 1/2. 中間一樣用直線連起來.

Proposition 8.6. The scaled symmetric random walk has independent increments.

PROOF. If $0 = t_0 < t_1 < t_2 < \cdots < t_m = t$ satisfy $nt_i \in \mathbb{N}$ for all i, then

$$W_{t_1}^{(n)}, W_{t_2}^{(n)} - W_{t_1}^{(n)}, W_{t_3}^{(n)} - W_{t_2}^{(n)}, \cdots, W_{t_m}^{(n)} - W_{t_{m-1}}^{(n)}$$

are independent. 至於一般的情況 $(nt_i \notin \mathbb{N})$ 就比較複雜, 必須分 case 討論. 我們在這裡就不講了.

<u>Theorem</u> 8.7 (Central Limit Theorem). Fixed $t \geq 0$. As $n \to \infty$, the distribution of scalar symmetric random walk $(W_t^{(n)})$ evaluated at time t converges to $\mathcal{N}(0,t)$ in distribution.

8.2. Brownian motions

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

<u>Definition</u> 8.8. A stochastic process $W = (W_t)_{t\geq 0}$ is called a <u>standard Brownian motion</u> (<u>BM</u>) if

- (i) $W_0 = 0$ P-a.s.
- (ii) (W_t) has independent increments, i.e., for $0 \le t_1 \le t_2 \le \cdots \le t_m$,

$$W_{t_1}, W_{t_2} - W_{t_1}, W_{t_3} - W_{t_2}, ..., W_{t_m} - W_{t_{m-1}}$$

are independent

(iii) For
$$0 \le s < t$$
, $W_t - W_s \sim \mathcal{N}(0, t - s)$.

Remark 8.9. For all $t \geq 0$, $W_t \sim \mathcal{N}(0, t)$.

<u>Remark</u> 8.10. Difference between Brownian motion (W_t) and scaled symmetric random walk $(W_t^{(n)})$.

(1) The scaled random walk has a natural time step 1/n and is linear between these time steps.

(2) The scaled random walk $(W_t^{(n)})$ is only approximated normal for each t, but Brownian motion is exactly normal.

Lemma 8.11. For $0 \le s \le t$, the covariance of W_s and W_t is s. Explicitly,

$$\mathbb{E}[W_s W_t] = s \wedge t.$$

PROOF. Since $\mathbb{E}[W_s] = \mathbb{E}[W_t] = 0$, the covariance of W_s and W_t is given by

$$\mathbb{E}[W_s W_t] = \mathbb{E}[W_s (W_t - W_s + W_s)] = \mathbb{E}[W_s (W_t - W_s)] + \mathbb{E}[W_s^2]$$
$$= \mathbb{E}[W_s] \mathbb{E}[W_t - W_s] + \mathbb{E}[W_s^2] = 0 + s = s$$

due to the independent increments of Brownian motion.

<u>Proposition</u> 8.12. The moment generating function of Brownian motion (for the m-dimensional random vector $(W_{t_1}, W_{t_2}, ..., W_{t_m})$) is given by

$$\mathbb{E}\left[\exp\left(u_1W_{t_1} + u_2W_{t_2} + \dots + u_mW_{t_m}\right)\right]$$

$$= \exp\left(\frac{1}{2}(u_1 + u_2 + \dots + u_m)^2 t_1 + \frac{1}{2}(u_2 + u_3 + \dots + u_m)^2 (t_2 - t_1)\right)$$

$$+ \dots + \frac{1}{2}(u_{m-1} + u_m)^2 (t_{m-1} - t_{m-2}) + \frac{1}{2}u_m^2 (t_m - t_{m-1})\right)$$

PROOF. We prove here only the case m=3. For $0 \le t_1 < t_2 < t_3$, due to the independence of W_{t_1} , $W_{t_2} - W_{t_1}$, $W_{t_3} - W_{t_2}$, we have

$$\mathbb{E}\left[\exp\left(u_{1}W_{t_{1}}+u_{2}W_{t_{2}}+u_{3}W_{t_{3}}\right)\right]$$

$$=\mathbb{E}\left[\exp\left(u_{3}(W_{t_{3}}-W_{t_{2}})+(u_{2}+u_{3})(W_{t_{2}}-W_{t_{1}})+(u_{1}+u_{2}+u_{3})w_{t_{1}}\right)\right]$$

$$=\mathbb{E}\left[\exp\left(u_{3}(W_{t_{3}}-W_{t_{2}})\right)\right]\cdot\mathbb{E}\left[\exp\left((u_{2}+u_{3})(W_{t_{2}}-W_{t_{1}})\right)\right]\cdot\mathbb{E}\left[\exp\left((u_{1}+u_{2}+u_{3})w_{t_{1}}\right)\right]$$

$$=\exp\left(\frac{1}{2}u_{3}^{2}(t_{3}-t_{2})\right)\exp\left(\frac{1}{2}(u_{2}+u_{3})^{2}(t_{2}-t_{1})\right)\exp\left(\frac{1}{2}(u_{1}+u_{2}+u_{3})^{2}t_{1}\right)$$

$$=\exp\left(\frac{1}{2}(u_{1}+u_{2}+u_{3})^{2}t_{1}+\frac{1}{2}(u_{2}+u_{3})^{2}(t_{2}-t_{1})+\frac{1}{2}u_{3}^{2}(t_{3}-t_{2})\right).$$

<u>Definition</u> 8.13. A <u>filtration for Brownian motion</u> (or <u>Brownian filtration</u>) is a collection of σ-algebra \mathcal{F}_t , $t \geq 0$, satisfying

- (i) (information accumulates) $\mathcal{F}_s \subseteq \mathcal{F}_t$ for all $s \leq t$;
- (ii) (adaptivity) For each $t \geq 0$, W_t is \mathcal{F}_t -measurable;
- (iii) (independent of future increment) For $0 \le s \le t$, $W_t W_s$ is independent of \mathcal{F}_s .

Example 8.14. $\mathbb{F}^W = (\mathcal{F}_t^W)$ is a Brownian filtration.

Theorem 8.15. Brownian motion is a martingale.

PROOF. For $0 \le s < t$,

$$\mathbb{E}[W_t|\mathcal{F}_s] = \mathbb{E}[W_t - W_s|\mathcal{F}_s] + \mathbb{E}[W_s|\mathcal{F}_s] = \mathbb{E}[W_t - W_s] + W_s$$
$$= 0 + W_s = W_s.$$

Exercise

- (1) Let (W_t) be a one-dimensional standard Brownian motion. Check whether the following processes (X_t) are martingales with respect to (\mathcal{F}_t) :
 - (a) $X_t = W_t + 4t$.
 - (b) $X_t = W_t^2$.
 - (c) $X_t = t^2 W_t 2 \int_0^t s W_s \, ds$.
 - (d) $X_t = W_t^{(1)} W_t^{(2)}$, where $(W_t^{(1)})$ and $(W_t^{(2)})$ are two independent Brownian motions.
- (2) Let (W_t) be a 1-dimensional standard Brownian motion.
 - (a) For fixed $t_0 \geq 0$, prove that

$$\bar{W}_t := W_{t_0+t} - W_{t_0}, \qquad t \ge 0$$

is a Brownian motion.

(b) Let c be a constant, prove that

$$\hat{W}_t := \frac{1}{c} W_{c^2 t}$$

is also a Brownian motion.

(c) Let σ be a constant. Show that

$$E\left[\exp\left(\sigma(W_t - W_s)\right)\right] = \exp\left(\frac{1}{2}\sigma^2(t - s)\right)$$

for $0 \le s < t$.

8.3. The Brownian sample path

<u>Theorem</u> 8.16. (1) There is a <u>continuous</u> version of Brownian motion.¹

- (2) For almost every $\omega \in \Omega$, the Brownian sample path $W(\omega)$ is nowhere differentiable.
- (3) For almost every $\omega \in \Omega$, the Brownian sample path $W_{\cdot}(\omega)$ is monotone in no interval.
- (4) For almost every $\omega \in \Omega$, the set of points of local maximum for the Brownian sample path $W_{\cdot}(\omega)$ is countable and dense in $[0, \infty)$, and all local maxima are strict.

Theorem 8.17 (Law of Iterated logarithm). For almost every $\omega \in \Omega$, we have

$$(1) \limsup_{t\downarrow 0} \frac{W_t(\omega)}{\sqrt{2t \log \log (1/t)}} = 1,$$

$$\liminf_{t\downarrow 0} \frac{W_t(\omega)}{\sqrt{2t \log \log (1/t)}} = -1.$$

$$(2) \limsup_{t\to \infty} \frac{W_t(\omega)}{\sqrt{2t \log \log (1/t)}} = 1,$$

$$\liminf_{t\to \infty} \frac{W_t(\omega)}{\sqrt{2t \log \log (1/t)}} = -1.$$

這個定理主要是在講述 Brownian motion 值的範圍. 當然, 這並不是説當 t 很大, 或 t 很小時, Brownian motion 會介於這兩個函數之間, 這主要是在顯示對所有的 sample path 來講, 在 t 很大, 或 t 很小時, Brownian motion 上升或下降的趨勢不會超過給定的這兩個函數. 亦即, 大多數的值會介於 $\pm \sqrt{2t \log \log t}$ 與 $\pm \sqrt{2t \log \log 1/t}$ 之間. $\sqrt{2t \log \log t}$ 與 $\sqrt{2t \log \log 1/t}$ 的圖形可見 Figure 8.3 及 Figure 8.3.

Theorem 8.18. The quadratic variation of the standard Brownian motion is given by

$$\langle W \rangle_t = t$$
 \mathbb{P} - a.s. for all $t \geq 0$.

¹所以以後我們會把 Brownian motion 想成有 continuous path!!! 這也是為何有些書上會在定義 Brownian motion 時直接定義其為連續的原因.

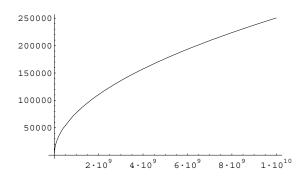


FIGURE 8.4. The graph of $\sqrt{2t \log \log t}$ when t is large

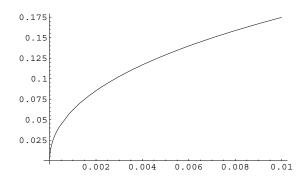


FIGURE 8.5. The graph of $\sqrt{2t \log \log \frac{1}{t}}$ when t is small

PROOF. 在這裡我們用兩種不同的方法來求 quadratic variation.

<u>Method 1</u>: Let $\Pi = \{0 = t_0, t_1, t_2, \cdots, t_n\}$ be a partition of [0, t]. Define

$$\mathbb{Q}_{\Pi} = \sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_i})^2.$$

Then

$$\mathbb{E}[\mathbb{Q}_{\Pi}] = \sum_{i=0}^{n-1} \mathbb{E}[(W_{t_{i+1}} - W_{t_i})^2] = \sum_{i=0}^{n-1} (t_{i+1} - t_i) = t,$$

and

$$\mathbb{E}[(\mathbb{Q}_{\Pi} - t)^{2}] = \mathbb{E}\left[\left(\sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_{i}})^{2} - (t_{i+1} - t_{i})\right)^{2}\right]$$

$$= \sum_{i=0}^{n-1} \mathbb{E}\left[\left((W_{t_{i+1}} - W_{t_{i}})^{2} - (t_{i+1} - t_{i})\right)^{2}\right]$$

$$+2\sum_{i < j} \mathbb{E}\left[\left((W_{t_{i+1}} - W_{t_{i}})^{2} - (t_{i+1} - t_{i})\right)\left((W_{t_{j+1}} - W_{t_{j}})^{2} - (t_{j+1} - t_{j})\right)\right].$$

For i < j, since $W_{t_{i+1}} - W_{t_i}$ and $W_{t_{j+1}} - W_{t_j}$ are independent,

$$\mathbb{E}\left[\left((W_{t_{i+1}} - W_{t_i})^2 - (t_{i+1} - t_i)\right) \left((W_{t_{j+1}} - W_{t_j})^2 - (t_{j+1} - t_j)\right)\right]$$

$$= \mathbb{E}\left[(W_{t_{i+1}} - W_{t_i})^2 (W_{t_{j+1}} - W_{t_j})^2\right] - (t_{i+1} - t_i) \mathbb{E}\left[(W_{t_{j+1}} - W_{t_j})^2\right]$$

$$-(t_{j+1} - t_j) \mathbb{E}\left[(W_{t_{i+1}} - W_{t_i})^2\right] + (t_{i+1} - t_i) (t_{j+1} - t_j)$$

$$= \mathbb{E}\left[(W_{t_{i+1}} - W_{t_i})^2\right] \cdot \mathbb{E}\left[(W_{t_{j+1}} - W_{t_j})^2\right] - (t_{i+1} - t_i) (t_{j+1} - t_j)$$

$$-(t_{j+1} - t_j) (t_{i+1} - t_i) + (t_{i+1} - t_i) (t_{j+1} - t_j)$$

$$= (t_{i+1} - t_i) (t_{j+1} - t_j) - (t_{j+1} - t_j) (t_{i+1} - t_i)$$

$$= 0.$$

Thus,

$$\mathbb{E}[(\mathbb{Q}_{\Pi} - t)^{2}] = \sum_{i=0}^{n-1} (\mathbb{E}[(W_{t_{i+1}} - W_{t_{i}})^{4}] - 2(t_{i+1} - t_{i})\mathbb{E}[(W_{t_{i+1}} - W_{t_{i}})^{2}] + (t_{i+1} - t_{i})^{2}).$$

Since

$$\mathbb{E}\left[(W_{t_{i+1}} - W_{t_i})^4 \right] = \frac{1}{\sqrt{2\pi(t_{i+1} - t_i)}} \int_{-\infty}^{\infty} x^4 e^{-\frac{x^2}{2(t_{i+1} - t_i)}} dx = 3(t_{i+1} - t_i)^2,$$

we get

$$\mathbb{E}[(\mathbb{Q}_{\Pi} - t)^{2}] = \sum_{i=0}^{n-1} \left(3(t_{i+1} - t_{i})^{2} - 2(t_{i+1} - t_{i})(t_{i+1} - t_{i}) + (t_{i+1} - t_{i})^{2} \right)$$

$$= 2 \sum_{i=0}^{n-1} (t_{i+1} - t_{i})^{2} \le 2 \sum_{i=0}^{n-1} \|\Pi\|(t_{i+1} - t_{i}) = 2t\|\Pi\| \longrightarrow 0,$$

as $\|\Pi\| \longrightarrow 0$, where $\|\Pi\| = \max |t_{i+1} - t_i|$. Hence,

$$\lim_{\|\Pi\| \to 0} \mathbb{E}[(\mathbb{Q}_{\Pi} - t)^2] = 0,$$

i.e.,

$$\lim_{\|\Pi\| \longrightarrow 0} \mathbb{Q}_{\Pi} = t \qquad \text{in } L^2.$$

而利用 subsequence convergence 的性質, 我們可以得到 almost everywhere convergence.

Method 2: Claim : $W_t^2 - t$ is a martingale.

For $0 \le s \le t$,

$$\mathbb{E}[W_t^2 - t | \mathcal{F}_s] = \mathbb{E}[(W_t - W_s + W_s)^2 | \mathcal{F}_s] - t$$

$$= \mathbb{E}[(W_t - W_s)^2 + 2W_s(W_t - W_s) + W_s^2 | \mathcal{F}_s] - t$$

$$= \mathbb{E}[(W_t - W_s)^2 | \mathcal{F}_s] + 2\mathbb{E}[W_s(W_t - W_s) | \mathcal{F}_s] + \mathbb{E}[W_s^2 | \mathcal{F}_s] - t$$

$$= \mathbb{E}[(W_t - W_s)^2] + 2W_s \mathbb{E}[W_t - W_s] + W_s^2 - t$$

$$= t - s + 0 + W_s^2 - t = W_s^2 - s.$$

Due to Doob-Meyer decomposition, we have $\langle W \rangle_t = t$.

<u>Remark</u> 8.19. Let $\Pi = \{t_0, t_1, t_2, \dots, t_n\}$ be a partition of [0, t]. Then

$$\lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_i})^2 = t,$$

$$\lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_i})(t_{i+1} - t_i) = 0,$$

$$\lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} (t_{i+1} - t_i)^2 = 0.$$

We write informally

$$dW_t \cdot dW_t = dt,$$

$$dW_t \cdot dt = 0,$$

$$dt \cdot dt = 0.$$

8.4. Exponential martingales

一般股票價格並不會像 Brownian motion 一樣有正有負. 因此我們想找個函數 preserving Brownian motion 的 monotonicity, 又絕對是正的. 最簡單的想法便是 exponential function. 但這是由函數的性質得到的猜想, 我們有沒有辦法由財務的觀點得出 exponential function 呢? 首先先看看 binomial model. 如 Figure 8.4. 此為時間間隔為 1 的情況. 我們獻在觀察一下時間間隔為 1/n 的狀況.

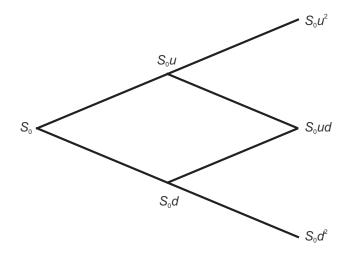


FIGURE 8.6. Binomial model

Suppose the interest rate r = 0,

$$u_n = 1 + \frac{\sigma}{\sqrt{n}}, \qquad d_n = 1 - \frac{\sigma}{\sqrt{n}},$$

where σ is a positive constant (called volatility).

Assume that $nt \in \mathbb{N}$, that means that up to time t, it is an nt-period model. The risk-neutral probability measure in the one-period model is given by

$$\tilde{p} = \frac{1 - d_n}{u_n - d_n} = \frac{1 - (1 - \frac{\sigma}{\sqrt{n}})}{(1 + \frac{\sigma}{\sqrt{n}}) - (1 - \frac{\sigma}{\sqrt{n}})} = \frac{1}{2}$$

$$\tilde{q} = \frac{u_n - 1}{u_n - d_n} = \frac{(1 + \frac{\sigma}{\sqrt{n}}) - 1}{(1 + \frac{\sigma}{\sqrt{n}}) - (1 - \frac{\sigma}{\sqrt{n}})} = \frac{1}{2}$$

Just like to toss a fair coin. This implies that we may regard the nt-period model as tossing a fair coin nt times.

Suppose

 H_{nt} = the number of heads in the first nt coin tosses.

 T_{nt} = the number of tails in the first nt coin tosses.

 M_{nt} = the position of the 1-dimensional random walk. Clearly, we have

$$\begin{cases} H_{nt} + T_{nt} = nt, \\ H_{nt} - T_{nt} = M_{nt}. \end{cases}$$

Thus,

$$\begin{cases} H_{nt} = \frac{nt + M_{nt}}{2}, \\ T_{nt} = \frac{nt - M_{nt}}{2}. \end{cases}$$

This implies that the stock price at time t is given by

$$S_t^{(n)} = S_0 u_n^{H_{nt}} d_n^{T_{nt}} = S_0 \left(1 + \frac{\sigma}{\sqrt{n}} \right)^{\frac{nt + M_{nt}}{2}} \left(1 - \frac{\sigma}{\sqrt{n}} \right)^{\frac{nt - M_{nt}}{2}}$$

Theorem 8.20. As $n \longrightarrow \infty$, the distribution of $S_t^{(n)}$ converges to the distribution of

$$S_t = S_0 \exp\left(\sigma W_t - \frac{\sigma^2 t}{2}\right)$$

where $W_t \sim \mathcal{N}(0,t)$

PROOF. Claim: the distribution of $\log S_t^{(n)}$ converges to the distribution of $\log S_t$, i.e.,

$$\log S_t^{(n)} \longrightarrow \log S_t$$
 in distribution.

$$\log S_t^{(n)} = \log S_0 + \frac{nt + M_{nt}}{2} \log \left(1 + \frac{\sigma}{\sqrt{n}}\right) + \frac{nt - M_{nt}}{2} \log \left(1 - \frac{\sigma}{\sqrt{n}}\right)$$

$$= \log S_0 + \frac{nt + M_{nt}}{2} \left(\frac{\sigma}{\sqrt{n}} - \frac{\sigma^2}{2n} + O(n^{-\frac{3}{2}})\right)$$

$$+ \frac{nt - M_{nt}}{2} \left(-\frac{\sigma}{\sqrt{n}} - \frac{\sigma^2}{2n} + O(n^{-\frac{3}{2}})\right)$$

$$= \log S_0 + nt \left(-\frac{\sigma^2}{2n} + O(n^{-\frac{3}{2}})\right) + M_{nt} \left(\frac{\sigma}{\sqrt{n}} + O(n^{-\frac{3}{2}})\right)$$

$$= \log S_0 - \frac{\sigma^2 t}{2} + O(n^{-\frac{1}{2}}) + \sigma W_t^{(n)} + O(n^{-1}) W_t^{(n)},$$

which converges in distribution to

$$\log S_0 + \sigma W_t - \frac{\sigma^2 t}{2} = \log S_t.$$

<u>Definition</u> 8.21. Let (W_t) be a Brownian motion with filtration (\mathcal{F}_t) , $\sigma \in \mathbb{R}$. The exponential martingale corresponding to σ is defined by

$$Z_t = \exp\left(\sigma W_t - \frac{\sigma^2}{2}t\right)$$

(A special case of geometric Brownian motion)

Theorem 8.22. $(Z_t, \mathcal{F}_t)_{t\geq 0}$ is a martingale.

PROOF. For $0 \le s \le t$,

$$\mathbb{E}[Z_t|\mathcal{F}_s] = \mathbb{E}\left[\exp\left(\sigma W_t - \frac{\sigma^2 t}{2}\right)\middle|\mathcal{F}_s\right]$$

$$= \mathbb{E}\left[\exp(\sigma W_t)|\mathcal{F}_s\right] \cdot \exp\left(-\frac{\sigma^2 t}{2}\right)$$

$$= \mathbb{E}\left[\exp\left(\sigma (W_t - W_s) + \sigma W_s\right)|\mathcal{F}_s\right] \cdot \exp\left(-\frac{\sigma^2 t}{2}\right)$$

$$= \mathbb{E}\left[\exp\left(\sigma (W_t - W_s)\right)|\mathcal{F}_s\right] \cdot \exp\left(\sigma W_s\right) \cdot \exp\left(-\frac{\sigma^2 t}{2}\right).$$

Since

$$\mathbb{E}[\exp(\sigma(W_t - W_s))|\mathcal{F}_s] = \mathbb{E}[\exp(\sigma(W_t - W_s))] = \exp\left(\frac{1}{2}\sigma^2(t - s)\right),$$

we have

$$\mathbb{E}[Z_t|\mathcal{F}_s] = \exp\left(\frac{1}{2}\sigma^2(t-s)\right) \cdot \exp\left(\sigma W_s\right) \cdot \exp\left(-\frac{\sigma^2 t}{2}\right)$$
$$= \exp\left(\sigma W_s - \frac{1}{2}\sigma^2 s\right) = Z_s.$$

8.5. d-dimensional Brownian motions

<u>Definition</u> 8.23. A *d*-dimensional stochastic process $B = (B_t)_{t\geq 0} = ((B_t^1, B_t^2, \dots, B_t^d))_{t\geq 0}$ is called a <u>*d*-dimensional Brownian motion</u> if every $(B_t^i)_{t\geq 0}$ is a 1-dimensional Brownian motion and (B_t^1) , (B_t^2) , ..., (B_t^d) are independent.

<u>Remark</u> 8.24. A *d*-dimensional Brownian motion is a *d*-dimensional continuous martingale with cross variation.

$$\langle B^i, B^j \rangle_t = \delta_{ij}t$$
, for $1 \le i, j \le d$.

<u>Theorem</u> 8.25 (Lévy Theorem). Let $M = (M^1, M^2, \dots, M^d)$ be a d-dimensional continuous local martingale with respect to (\mathcal{F}_t) and $M_0 = 0$ \mathbb{P} -a.s. If

$$\langle M^i, M^j \rangle_t = \delta_{ij} t, \quad for \quad 1 \le i, j \le d,$$
 (8.1)

then M is a d-dimensional Brownian motion.

Remark 8.26. The condition "continuity" is important. 例如 Poisson process 即為滿足 (8.1) 之 martingale, 但顯然 Poisson process 並不是個 martingale.

Theorem 8.27. Let M be a real-valued continuous local martingale with respect to (\mathcal{F}_t) and $M_0 = 0$ \mathbb{P} -a.s. with

$$\lim_{t \to \infty} \langle M \rangle_t = \infty.$$

For each $t \geq 0$, define the stopping time

$$\tau_t = \inf\{s : \langle M \rangle_s > t\}$$

Then $(M_{\tau_t})_{t\geq 0}$ is a Brownian motion with respect to (\mathcal{F}_{τ_t}) .

Remark 8.28. Let B be a d-dimensional Brownian motion starting from 0.

- (1) If d = 1, $B_t(\omega)$ visits 0 infinite many times.
- (2) If d = 2, $B_t(\omega)$ does not hit the origin after time 0, however it hits every ball with center at the origin.
- (3) If $d \geq 3$, $|B_t(\omega)| \longrightarrow \infty$ as $t \to \infty$.

Exercise

(1) **Definition:** A <u>Poisson process</u> with intensity $\lambda > 0$ is an adapted, integer-valued càdlàg (right-continuous and left limit exists) process $N = (N_t, \mathcal{F}_t)_{t\geq 0}$ such that

- (i) $N_0 = 0$, P-a.s.;
- (ii) $N_t N_s$ is independent of \mathcal{F}_s , for $0 \le s \le t$;
- (iii) $N_t N_s$ is Poisson distributed with mean $\lambda(t s)$.

Given a Poisson process N with intensity λ , define the compensated Poisson process

$$M_t = N_t - \lambda t.$$

- (a) (M_t, \mathcal{F}_t) is a martingale.
- (b) Is the Poisson process $N=(N_t,\mathcal{F}_t)_{t\geq 0}$ a martingale, submartingale or supermartingale?
- (c) Show that the quadratic variation of the compensated Poisson process M is given by $\langle M \rangle_t = \lambda t$.
- (2) Let (W_t) be a d-dimensional Brownian motion starting at 0 and let $U \in \mathbb{R}^{d \times d}$ be a constant orthogonal matrix, i.e., $UU^T = I$. Prove that

$$\tilde{B}_t := UB_t$$

is also a Brownian motion.