EXAM

FEBRUARY 20, 2015 - DURATION: 2H30 - NO DOCUMENTS.

We are given a financial market made of two assets, a risky one and a non-risky one. The market evolves in discrete time over N periods. The spot price of the non-risky asset at times $0, 1, \ldots, N$ is denoted by $S_0^0, S_1^0, \ldots, S_N^0$. Similarly, the spot price of the risky asset at times $0, 1, \ldots, N$ is denoted by S_0, S_1, \ldots, S_N .

The dynamics of the non-risky asset are given by:

$$\forall n \in \{0, \dots, N\}, \quad S_n^0 = S_0(1+r)^n,$$

where r > 0, whereas the dynamics of the risky asset follow a binomial model:

$$\forall n \in \{0, \dots, N\}, \quad S_n = S_0 \xi_1 \dots \xi_n,$$

where ξ_1, \ldots, ξ_N are N independent and identically distributed random variables on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with distribution:

$$\forall n \in \{0,\ldots,N\}, \quad \mathbb{P}(\xi_n = u) = 1 - \mathbb{P}(\xi_n = d) = p,$$

for $p \in (0, 1)$ and d < 1 + r < u.

We assume that, for any $n=0,\ldots,N-1$, the detention of k-shares of the risky asset between times n and n+1 pays, at time n+1, a dividend equal to kD, where $D \ge 0$ is the dividend per share.

The filtration generated by the sequence $(\xi_n)_{n=0,\dots,N}$ is denoted by $(\mathcal{F}_n)_{n=0,\dots,N}$.

(1) Assume that, at some time n = 0, ..., N - 1, a financial agent has a capital $W_n > 0$ and invests a proportion $\hat{\alpha}_n \in [0, 1]$ of the capital in the risky asset and, then, the proportion $(1 - \hat{\alpha}_n)$ in the non-risky asset. Show that the wealth at the next time n + 1 writes

$$W_{n+1}^{\hat{\alpha}_n} = \hat{\alpha}_n W_n \left(\xi_{n+1} + \frac{D}{S_n} \right) + (1 - \hat{\alpha}_n) W_n (1 + r),$$

where the superscript $\hat{\alpha}_n$ in the left-hand side indicates that the wealth at time n+1 depends on the strategy of investment chosen by the agent at time n. Check that $W_{n+1}^{\hat{\alpha}_n}$ is non-negative.

- Assume for the moment that N=1 and that the financial agent aims at maximizing $\mathbb{E}[U(W_1^{\hat{\alpha}_0})]$ over $\hat{\alpha}_0$, for some utility function $U:(0,+\infty)\to\mathbb{R}$, for an initial capital $W_0=x>0$ and for an initial spot price $S_0=s>0$.
 - (a) Taking $U(x) = x^q$ for some $q \in (0,1)$, show that there exists a function non-increasing function $c: \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$\sup_{\hat{\alpha} \in [0,1]} \mathbb{E}[U(W_1^{\hat{\alpha}})] = c(s)x^q.$$

(b) Prove that there exists a unique $\alpha^*(s) \in [0,1]$ such that

$$\alpha^*(s) = \operatorname{argmax}_{\hat{\alpha} \in [0,1]} \mathbb{E}[U(W_1^{\hat{\alpha}})],$$

and check that it does not depend on x.

(3) We now return to the case when $N \geq 1$. The goal is to maximize $\mathbb{E}[U(W_{\mathbb{N}}^{\hat{\mathbf{q}}})]$ over the strategies $\hat{\boldsymbol{\alpha}} = (\hat{\alpha}_0, \dots, \hat{\alpha}_{N-1})$ that are adapted to the filtration $(\mathcal{F}_n)_{n=0,\dots,N-1}$.

To this end, we let the value function U_n at time n be a function of both the wealth x of the agent at time n and the spot price of the risky asset s at time n:

$$U_n(x,s) = \sup_{(\widehat{\alpha}_n,\dots,\widehat{\alpha}_{N-1})} \mathbb{E}\left[U\left(W_N^{(\widehat{\alpha}_n,\dots,\widehat{\alpha}_{N-1})}\right)\right],$$

with the prescription that $W_n = x$ and $S_n = s$.

- (a) What are the admissible values for s at time n (in terms of S_0 , d, u and n)?
- (b) Prove that U_N does not depend on s.
- (c) Propose (without any proof) a suitable version of the dynamic programming principle.
- (4) In this question, take for granted the dynamic programming principle proposed right above.
 - (a) Prove that, for any $n \in \{0, ..., N\}$, there exists a non-increasing function $c_n : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$U_n(x,s) = c_n(s)x^q.$$

- (b) Express $c_n(s)$ in terms of $c_{n+1}(s)$.
- (c) Prove that, at any time n, there is one and only optimal choice for the financial agent to allocate his/her capital. Describe the information that is needed to proceed with such an allocation.
- (5) In this question, we suppose D=0 and choose p=1/2. We also allow $\hat{\alpha}$ to be in [-(1+r)/(u-(1+r)),(1+r)/(1+r-d)].
 - (a) Show that, with the admissible values for the allocation, the wealth remains non-negative.
 - (b) Show that Question (2a) holds true, but with c independent of s given by

$$c = \frac{(1+r)^q}{2} \frac{(u-d)^q}{[(u-(1+r))^{q/(q-1)} + ((1+r)-d)^{q/(q-1)}]^{q-1}}.$$

- (c) Choose $u = 1 + \mu + a$ and $d = 1 + \mu a$. Check that $1 + \mu$ is the mean of ξ and a^2 is the variance of ξ . Why would it make sense to assume $\mu > r$?
- (d) Show that $c = (1+r)^q$ when $\mu = r$. Explain why it does not depend on a.
- (e) Let $\Delta t = T/N$ be the time step of a discretization of an interval [0,T]. choose $r = \rho \Delta t$, $\mu r = \lambda \Delta t$ and $a = \sigma \sqrt{\Delta t}$. Show that

$$c^N \sim_{N \to \infty} \exp \left[\left(q \rho - \frac{q}{2(q-1)} \frac{\lambda^2}{\sigma^2} \right) T \right].$$

What can you say about the optimal wealth when N tends to ∞ ?

EXAM

MARCH 19, 2015 - DURATION: 3H00 - NO DOCUMENTS.

The exam consists of two parts, which are almost independent.

PART A

On a filtered probability space $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$, equipped with a one-dimensional Brownian motion $(W_t)_{t\geq 0}$ with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$, consider a controlled process of the form:

$$(\Box) dX_t = \alpha_t dt + dW_t, \quad t \in [0, T],$$

the initial value $X_0 = x_0$ being prescribed and the control process $(\alpha_t)_{t \in [0,T]}$ being $(\mathcal{F}_t)_{t \in [0,T]}$ -progressively measurable and satisfying

$$\mathbb{E}\int_0^T |\alpha_t|^2 dt < \infty.$$

Given a smooth bounded function $g: \mathbb{R} \to \mathbb{R}$, with bounded derivatives of any order, we then let $J((\alpha_t)_{t \in [0,T]})$ be the cost functional:

$$(\Box\Box) \qquad J((\alpha_t)_{t\in[0,T]}) = \mathbb{E}\left[g(X_T) + \frac{1}{2}\int_0^T |\alpha_t|^2 dt\right].$$

The goal is to identify the optimal path(s) minimizing J.

(1) From the general form given in the course, show that the Hamilon-Jacobi-Bellman equation here writes:

$$(\star) \qquad \partial_t u(t,x) + \frac{1}{2} \partial_{xx}^2 u(t,x) - \frac{1}{2} |\partial_x u(t,x)|^2 = 0, \quad (t,x) \in [0,T] \times \mathbb{R},$$
$$u(T,x) = g(x), \quad x \in \mathbb{R}.$$

(2) Show that $u \in \mathcal{C}^{1,2}([0,T] \times \mathbb{R})$ solves (\star) if and only if $v = \exp(-u)$ solves

$$(\star\star) \qquad \partial_t v(t,x) + \frac{1}{2} \partial_{xx}^2 v(t,x) = 0, \quad (t,x) \in [0,T], \times \mathbb{R}$$
$$v(T,x) = \exp(-g(x)), \quad x \in \mathbb{R}.$$

(3) Consider the function

$$w(t,x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left[-g\left(x + \sqrt{T - t} \ y\right)\right] \exp\left(-\frac{y^2}{2}\right) dy, \quad (t,x) \in [0,T] \times \mathbb{R}.$$

- (a) Show that w is continuous in (t, x) and has derivatives of any order in x that are continuous in (t, x). Check that all the derivatives (in x) are bounded.
- (b) Prove that w is differentiable in the parameter t on [0, T), $\partial_t w$ being continuous on $[0, T) \times \mathbb{R}$.

(4) Show that w may be written under the form

$$w(t,x) = \frac{1}{\sqrt{2\pi(T-t)}} \int_{\mathbb{R}} \exp\left[-g(y)\right] \exp\left(-\frac{(x-y)^2}{2(T-t)}\right) dy,$$

and solves $(\star\star)$ on $[0,T)\times\mathbb{R}$.

By a continuity argument, we could prove that w is differentiable in time at t = T as well and that $w \in \mathcal{C}^{1,2}([0,T] \times \mathbb{R})$. We admit this claim. Below, we let:

$$z(t,x) = -\ln(w(t,x)), \quad (t,x) \in [0,T] \times \mathbb{R}.$$

(5) Consider now (\square) for some control process $(\alpha_t)_{t\in[0,T]}$. Using Itô's formula, prove that

$$J((\alpha_t)_{t \in [0,T]}) = z(0,x_0) + \frac{1}{2} \mathbb{E} \int_0^T |\alpha_t + \partial_x z(t,X_t)|^2 dt.$$

- (6) Deduce that there exists a unique path $(X_t^{\star})_{t \in [0,T]}$ minimizing J (with the given initial condition). Characterize it as the solution of a uniquely solvable SDE (prove that the SDE admits a unique solution but don't try to find the explicit form of the solution).
- (7) Prove that $(\partial_x z(t, X_t^*))_{t \in [0,T)}$ is a martingale with respect to the filtration $(\mathcal{F}_t)_{t \in [0,T)}$. Deduce that there exists a constant c, possibly depending upon x_0 , such that, for all $t \in [0,T]$,

$$(\star\star\star)$$

$$\mathbb{E}[X_t^{\star}] = x_0 + tc.$$

PART B

We now consider ($\square\square$) but with $g(x) = \frac{1}{2}x^2$.

- (1) Find a solution z' to (\star) such that $\partial_x z'(t,\cdot)$ is a linear function in x for any t.
- (2) Consider now (\square) . Using Itô's formula, prove that

$$J((\alpha_t)_{t \in [0,T]}) = z'(0,x_0) + \frac{1}{2} \mathbb{E} \int_0^T |\alpha_t + \partial_x z'(t,X_t)|^2 dt.$$

- (3) Deduce that there exists a unique path $(X_t^*)_{t\in[0,T]}$ minimizing J. Find the explicit shape of $(X_t^*)_{t\in[0,T]}$.
- (4) Prove directly that $(\star \star \star)$ holds true and find the value of the constant c therein.
- (5) Replace now the condition $g(x) = \frac{1}{2}x^2$ by $g(x) = -\frac{1}{2}x^2$ and take $T = 1 \varepsilon$ for some $\varepsilon \in (0, 1)$.
 - (a) Compute the new value of c in $(\star \star \star)$.
 - (b) What happens when $\varepsilon \to 0$?
 - (c) In order to explain the above phenomenon, choose $x_0 = 0$, T = 1 and $\alpha_t = A$, for all $t \in [0, 1]$, in (\Box) , for some large real A > 0. Show that the cost to $(\alpha_t)_{t \in [0, 1]}$ is constant with A.
 - (d) Deduce that the cost functional may remain bounded along sequence of controls $(\alpha_t)_{t\in[0,T]}$ such that the sequence of kinetic energies $\mathbb{E}\int_0^1 |\alpha_t|^2 dt$ is unbounded.