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Exercise 1- Euler scheme LY s

For any n € N, we denote by (X;" () )1<k<,. a sequence of independent gaussian
random variables with mean 0 and variance - L We set S5 (n) — =0 and’

S.l(cﬂ) = ZX‘("') k = 1 . 2 I 3 a
Ci=1 ) w1 S %
(%) _ = gt (0 7, e )
n n n / gaat, - il A we
n'= ZSk X1 ( Cap ti . ’
k=0 - £ ) ‘
n-1/ () e o
Z](_n) = Z S(ﬂ) k+1 X('n) i s ) » £y , \E:':- A .'f-"'._:_.-
k=0 - L { gt Ty, - N
a) Does the ra,ndom variable S( ™ converge as n — oo? In whlch sense'? L ;w;,r:
What is the limit? - ; = 'ﬂF;,h e
b) Does the random variable Yl(“) converge as n — co? In which sense? I _
‘What is the limit? ' F o TRl 28 Aok

¢) Does the random variable Zf") ‘converge as n — oco? In which sense?
What is the limit? '

Exercise 2 ‘

Let (W;,t > 0) be a one-dimensional Brow-uié:n motion and Tp < Ty <Ty i;hree
fixed deterministic times. We set: :
Ya s = Wi, — aWg, — BWr,.

1) What is the law of Yy g7

" 2) Which conditions on & and £ imply that
a) Y, s and Wy, are independent

b) Y, s and Wr, are independent

¢) Y, s is independent of Wy, and Wr,

3) Write Wr,.as a function of WTO, Wr, and Yo g.
Assume that you have already simulated a Brownian Motion at time Ty,
Ty, -, Ton and you want to know the path on a finer grid, that is To < T3 <
Ty <+ <Toy_1 <Toy.
Knowing Wr,, Wy, -+ ,‘gﬁ v, give precisely the algorithm to generate Wry, Wry, -+, Wy s
: /
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Problem- First Hitting Times Pk

Part A- Classical functions associated to diﬂ’usion -

Let (X;,0<¢<7T) be the solution of the homogeneous (i.e the coefﬁments do
not depend on time) stochastic differential equation:

(1) ) dX; = b(X,)dt + o(X:)dW;.

Let 7, be the first hitting time of a by the diffusion process X

=inf{t>0,X, =a}.
We denote 775 = inf{r¥, 7).
a) Find the infinitesimal generator L associated to this diffusion process. We
recall the definition of the infinitesimal generator I, f (z) = lim,_,o E%® [M]

b) Characterize the functions s such that s(X;) is _g_lggal_martmgale (such
functions are known as scale functions)

c) If the initial condition z is net between.a and b, simplify 1'

d) Other\mse, (that is z € (a, b) or z € (b,a)), assuming the optimal stoppmg
- theorem is valid, find a relation between P%= e & 7 X) and the scale
functmn s.

Pa_rt B- Brownian motion with constant drift
e) Apply the prew.ous result to & Brownian motion with constant drift to
ﬁnd _
' T poe _{sup (We + 6t) > b] .
20

where d is 2 fixed real number (discuss the result in function of 4).

f) Applying the “reflection” principle, prove that:

: (szﬁt](m) . a) 7 (]GI - %) S .

where G is a standard gaﬁssién random variable N(0,1).

g) Give the probability density funct]on of the first hitting - tlme of 2 constant
by a sta.ndard one dlmensmnal Browman motion.

S

h) Applying Glrsa.nov s Theorem, give the probability-density function of the
first hitting time of a constant by a Brownian motion with constant drift,.’
tha.t is W; +76t. :






Université de Nice Sophia-Antipolis B 2013-2014
MathMods

_ :E)iam - Advanced Numerics for Computatibna.l Finance
| January 16th, 2014 — 3 hours
J. Inglis - E. Tanré

- Throughout the exam, we will work on an underlying filtered probability space (2, F, (Fo)iz0, P).

1 Part A: Short questions
1. Let n and d be positive integers. Consider the SDE
dXe = b(t, X¢)dt + o(t, X,)dW;, te(0,T], Xo=¢, (1)

where (W;)i>0 is an R%-valued Brownian-motion starting from 0 (adapted to the
filiration (F;)i>0), € is a random variable, b : [057] x R" — R™, and o : 0,T] x R™ —
Rnxd, )

(a) State the precisely the classical conditions undef which the SDE (1) has a unique
(strong) solution X; € R™ for all t > 0. -

(b) Describe the Monte-Carlo method to approximate E[f(Xr)] for some function
f R = R, supposing that we use an Euler scheme to sample approximately
from the law of X7. Given that the Monte-Carlo number is M , and that the
time step in the Euler scheme is § > 0, how many times must we sample a
normal random variable to complete the estimation (supposing 7 = d = )7 -

(c) Decompose the error in the Monte-Carlo method described in (b) into the dis-
cretization error and the statistical error. ~Give the names of two theorems %
(without precise statements) that can be applied to control the two error terms. R

2. Let (Wf)s>0 be a one-dimensional Brownian motion such that Wg§ = = € R almost
- surely and

e

. (a) State and prove the reflection principle for Brownian motion.
(b) Use the reflection principle to derive the density of MF,

. (c) Give an explicit scheme to simulate the law of ME. foe e » e w 5

) _ ) ( | | e T
"'Mz. (a) = ;lfc‘ @(Mt é_-__a\ ey -j{\ i; - i\)(&’t;{ ?,C\B_ -:{—; Q(Mt ~q\)
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(d) Prove that ‘
P(M§ > a,WE < a—b) =P(WE>a+b),
for all z,a,b € R and T' > 0. Use this to deduce that '

: 2
PO 2 AWE =) = op (-2 - ) -1),
for all z,y,z € Rsuch that z < z, y < zand all T > 0.

3. Suppose that we are in the Black-Scholes set up: we have a risky asset with price
process (S¢)i>0 that satisfies

dSt = #Stdt + O'StdWh t> O,

where u € R, 0 > 0 and (W)¢>0 is a standard 1-dimensional Brownian motion, as
well as a risk-free asset with price process (B¢)¢>p evolving according to

dB; = rBydt, t>0,
where r > 0.

Let V(t,z), t > 0, € R be the price of an option on the asset at time ¢ and when
S, = =. Suppose the option has maturity T and payoff function given by ¥ : R — R.
State the general pricing formula for V.

Determine an explicit formula for the value of the option when

‘1’(_"3)?{1 if o> K

0 otherwise

where K > 0 is a constant.

2 Part B: Long question
Consider the stochastic differential equatioﬁ in one dimension given by,
dX, = p(X)dt + (X)W, tE 0,1, (2)

where (W;)i>0 is a standard Brownian motion starting from 0, and u and o are functions
: R — R. Suppose that the initial condition is given by

Xo=¢,

where ¢ is an almost surely finite random variable on the underlying probability space
(Q, F,P), independent of (W¢)¢z0. Suppose that (2) has a unique solution for all ¢ € [0,1],
and that we would like to approximate this solution. ‘

. .

2
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- Use (4) and (5) to prove that : .

6. Prove by induction on k, that for any N € Nand w € 2, it holds that

%1

1Xis(@) = g™, -

_ ok
forallke {1,...,N}. In particular, use this to deduce that A =
— N—1" 3 ' — -
Kerzes o e 4
for all N € N, w € Q. 2 Y e o

Hint: A good place to start is to note that under"the ixﬁuction hypothesis, it holds
that '

| X551 > @71 S0,

since @ > 1 and by definition of Tn. You may also like to use the elementary inequality
la + b > max{|a, |b]} — min{|al, |b} for all a,b €R.

. Use the Brownian scaling property to prove that, by the definition of Qp,»

fe=2

P(Qy) >

2‘_1_NNﬁN exp (~NK?(ry + B,

for all N € N (where @ is given by (3)

)). You may also use without proof the inequal-
ities

_g2 —2z2
PUZ122)2 =, P(Zlels 2> 2,

for any z > 0, where Z ~ A/ (0,1) is a standard normally distributed random variable.

- Deduce that there exist constants ¢1,¢2 > 0 and o > 1 (independent of N ) such that

whenever N is large enough, it holds that

P(Qy) 2 ¢ exp(—c2N7). ) (5)

K ——
Jm B[] = oo,
and thus that '
. ¢o1p)
Jim E[XEP] = o, (©

for any p > 1.

- Finally, returning to equation (2), suppose'that the true solution is such that

EfJX1]7] < 0o

for some p € [1,00). Explain why (6) shows that the Euler scheme fails to converge
in both the strong and the weak sense under the given conditions on i and o. Use
the above results to give a simple example of an SDE with continuous coefficients
such that E[|X1]] < oo, but for which the Euler scheme does not converge.
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1 Part A: Shorter questions

L. Recall that the Laplace transform of a non-negative real-valued random variable X

is given by
wx(A)=E (e_’\x) ;
for A = 0.

(a) Compute the Laplace transform of the random variable X distributed according

to an exponential distribution with parameter # > 0 (so that E(X) = #~1).

(b) Let (Xi)ne {1,...~} be a family of independent random variables with the same

exponential probability distribution with parameter # > 0. Set

N
S =3 %
k=1

Compute the Laplace transform of Sy. Use this to confirm that the probability

density function of Sy is

AN v 6-‘\: N—1_—6x - >
(@) = ml e Bz

(c) Let M be the smallest integer N such that Sy,; > . Show that this random

variable has a Poisson distribution with parameter 6.

(d) Propose a simulation method of the Poisson distribution with parameter # which

requires samples only of the uniform distribution on [0, 1].
2. Let n > 1 and d > 1 be two fixed integers. Consider the SDE

dXi = a(t, X¢)dt + b(t, X¢)dW,;, t>0,

(1)

with initial condition Xo € R", where a : [0,00) x R® — R™, b: [0, 00) x R — Rnxd

and (W;)¢=p is a standard R?%-valued Brownian motion.






3.

4.

(a) Let T > 0 be fixed. Describe how to construct the Euler approximation of the
solution to the SDE (1) with time step discretization d > 0 on the time interval
[0, T]. Denote by (X};)ieo.1...,m} this approximation.

(b) State carefully the Strong Convergence Theorem for the Euler Scheme, making
precise the assumptions on the coefficients a and b.

(c) How many Gaussian variables are necessary to obtain M samples of the law of
X7

Suppose that we are in the Black-Scholes set up: we have a risky asset with price
process (St)¢>0 that satisfies

dSt == HSf(H -+ O-SdeIrf‘ t > 0,

where p € R, 0 > 0 and (Wy)s>0 is a standard 1-dimensional Brownian motion, as
well as a risk-free asset evolving according to the risk free rate » > 0. State the
general pricing formula for the price V (¢, z) of an option (at time ¢ and when the
price of the underlying is x) that pays ¥(Sp) at time 7.

An Asian option is an option that has a more general payoff function depending on
the whole path (S;);cjo,) (not only on the price Sy at time T') given by

o
v ((Sr)fe[o_;r]) = max {%f Sidt — KK, 0} .
0

for some K > 01i.e. the holder of the option receives a payoff at T if the average price
of the underlying asset on [0, 7] is bigger than K. Using the general pricing formula
with this payoff function, suggest a Monte-Carlo scheme to approximate the price of
this option when Sy = .

(a) Fix a, A € R, and suppose that u € C*(R) is a solution to the ODE

Lu(z) = Au(z), &L o
ufa) =1,

where the infinitesimal generator £ is given by

0_2

Lufw] 1= ?u”(.x) + b(z)u'(z),
with b: R — R and ¢ > 0 a constant. By applying [td’s formula to e~*u(X;)
where

dX; = b(X,)dt + adW,, (3)

A






show that u must be given by
u(z) =E (e_)“'“ | Xo = 1:) , Veda

where 7, := inf{t > 0: X; > a}. Clearly state any theorems that you use, and
explain why they are applicable.

(b) Describe two algorithms to approximate 7, = inf{t > 0: X; > a}, with (X¢)i>0
given by (3) and Xy = = < a, and state what assumptions on the drift b are
sufficient for these approximations to converge. Give the theoretical rates of
convergence of the two schemes.

2 Part B: Long question

Consider an R -valued random variable X with the following property: there exists a
constant C > 0 such that for any f € CY(R"Y) it holds that

2 X)
2 X = f ( < CE 2 ) :
B (P00 (glrgyy ) ) < CB(Iv20) ¢
Here, as usual, Vf(z) := 0z, f(x),..., 05 f(2)) € RN for & = (z1,...,2N) € RY and |- |
denotes the usual Euclidian distance in RY i.e.

N
lz|? = Z;xf, Ve ={Byen o5 2EN) E RN,
i=1

When (4) holds, we say that the law of X satisfies a logarithmic Sobolev inequality
with constant C'.

1. Use (4) to show that for all I € CYRY) such that |[VF|(z) < 1 for all z € RY, it
holds that |
E (AF0-HFED) < 08X 5
for all A € R.

Hint: Apply the inequality (4) to f = eéﬂ"g and note that if H(\) := %log E(eM (X)),
then

A2H'(AE (e)uf(x)) _\E (F(X)EAF(X)) _E (eAF(X)) log E (BAF(,\’)) '

This will yield a differential inequality for H, which can be solved by integrating
between 0 and A.






2. Use (5) to show that for all r > 0,

]
r

P(|F(X) - E(F(X))| 2 ) < 2e°7 (6)
again for any F € C}(RY) such that [VF| < 1.
Hint: Note that for any A > 0
P(F(X) —E(F(X)) 2 r) = P(MFX-EFED » &),

to which one can apply Markov’s inequality. One can note that the same argument
can also be applied to —F.

3. Now let (X;)ic(1,...n} be a family of independent identically distributed R-valued

random variables. Suppose that the common law of X; satisfies a logarithmic Sobolev
inequality with constant C. Use (6) to show that for any » > 0 and g € C 1(R) such

that |¢'| < 1,
j\r.r2
P >r ) <2exp| — . 7
( _7) < exp( C ) (7)

Hint: You may use without proof the fact that the law of X = (X;,...,Xn) € RN
also satisfies a logarithmic Sobolev inequality (4), with the same constant C'.

% ZQ(Xi) — E[g(X1)]
=1

4. Suppose that X; is an R-valued random variable, and that we want to approximate
it = E(X1) by a Monte-Carlo simulation. Let fiy denote the Monte-Carlo approxi-
mation of g with N simulations.

Suppose moreover we know that the law of X satisfies a logarithmic Sobolev in-
equality, with constant C'. Use (7) to estimate the number of simulations N that we
need in order to achieve an accuracy in our Monte-Carlo simulation of 0.1 with 95%
confidence. In other words, give a value of N such that the probability that

puy € [p—0.1, 0+ 0.1]

is greater than 0.95. What advantage does this method of obtaining confidence
intervals have over using the central limit theorem?






