WORKSHEET 4

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $\left(B_{t}\right)_{t \geq 0}$ a (real) Brownian motion.

1. Continuous Martingales

Exercise 1. Let X be a r.v. with finite expectation and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be a filtration. Prove that $\left(\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]_{t \geq 0}\right.$ is a $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-martingale.

Exercise 2. Process with independent increments. Let $\left(X_{t}\right)_{t \geq 0}$ be a integrable process with independent increments, that is for any $t>s, X_{t}-X_{s}$ is independent of $\sigma\left(X_{u}, u \leq s\right)$, such that for any $t \geq 0, \mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[X_{0}\right]$. Prove that:
(1) $\left(X_{t}\right)_{t \geq 0}$ is a martingale,
(2) if for any $t \geq 0, \mathbb{E}\left[X_{t}^{2}\right]<\infty$ then $\left(X_{t}^{2}-\mathbb{E}\left[X_{t}^{2}\right]\right)_{t \geq 0}$ is a martingale,
(3) if, for some $\lambda \in \mathbb{R}$ and for any $t \geq 0, \mathbb{E}\left[e^{\lambda X_{t}}\right]<\infty$ then $\left(Z_{t}\right)_{t \geq 0}$ is a martingale, where

$$
Z_{t}=e^{\lambda X_{t}} / \mathbb{E}\left[e^{\lambda X_{t}}\right]
$$

Exercise 3. Let M be a continuous non negative martingale such that $M_{0}=a>0$ and $\lim _{t \rightarrow \infty} M_{t}=0$ almost surely.
(1) For $y>0$. let $T_{y}=\inf \left\{t \geq 0, M_{t}=y\right\}$. Prove that $\mathbb{P}\left(T_{y}<\infty\right)=a / y$.
(2) Prove that $\sup _{t \geq 0} M_{t} \sim \frac{a}{U}$ where $U \sim \mathcal{U}([0,1])$.

2. Martingale and Brownian motion

Exercise 4. Let B_{1} and B_{2} be two independent Brownian motions. Prove that the process $X=B_{1} B_{2}$ is a martingale with respect to the filtration $\left(\mathcal{F}_{t}^{\left(B_{1}, B_{2}\right)}\right)_{t \geq 0}$.

Exercise 5. Let B be a Brownian motion started in $x \in \mathbb{R}$. Let $a \leq x \leq b$ and define $T_{a}=\inf \{t \geq$ $\left.0, B_{t}=a\right\}$ and $T_{b}=\inf \left\{t \geq 0, B_{t}=b\right\}$.
(1) Prove that B is a martingale. Is B uniformly integrable?
(2) Using Doob's optional stopping theorem, prove that

$$
\mathbb{P}\left(T_{b}<T_{a}\right)=\frac{x-a}{b-a}
$$

(3) We suppose now that $x=0$.
(a) Prove that the process $\left(B_{t}^{2}-t\right)_{t \geq 0}$ is a $\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}$-martingale.
(b) Use the previous results to show that $\mathbb{E}\left[T_{a} \wedge T_{b}\right]=|a| b$. What can you say about $\mathbb{E}\left[T_{a}\right]$?

Exercise 6. Let $I=-\inf _{0 \leq t \leq T_{1}} B_{t}$ where $T_{1}=\inf \left\{t \geq 0, B_{t}=1\right\}$. Prove that I is a continuous r.v. with density $f(x)=\frac{1}{(1+x)^{2}} 1_{x \geq 0}$.

Exercise 7. Let B be a Brownian Motion started in 0 and λ be a real number and define $M_{t}^{\lambda}=e^{\lambda B_{t}-\lambda^{2} t / 2}$.
(1) Prove that the process $\left(M_{t}^{\lambda}\right)_{t \geq 0}$ is a $\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}$-martingale.
(2) Let $a \in \mathbb{R}$ and define $T_{a}=\inf \left\{t \geq 0, B_{t}=a\right\}$. Prove that $\mathbb{E}\left[e^{-x T_{a}}\right]=e^{-a \sqrt{2 x}}$ for any $x \geq 0$.
(3) Prove that for any $a>0$,

$$
\mathbb{P}\left(\sup _{0 \leq s \leq t} M_{t}^{\lambda} \geq a\right) \leq \frac{1}{a} \text {. just Aprly Doob's Inequality }
$$

(4) Use the previous result to show the exponential inequality: for any $a>0$,

$$
\mathbb{P}\left(\sup _{0 \leq s \leq t} B_{t} \geq a t\right) \leq e^{-a^{2} t / 2} .
$$

Worksheer 4
Exercise 1

$$
\left(X, F_{r}\right)
$$

$\left.\left(E|X| F_{1}\right]\right)_{\tau, 0}$ is a F_{Γ} Martingale?

* $\left.E\left[|E| X \mid F_{1}\right] \mid\right] \leq E[\underbrace{E\left[|X| \mid F_{+}\right]}_{\text {sinch beraquse XVss }}]$ «401

$$
=E[|X|]<\infty \quad \text { linile expectation }
$$

* $E\left[X \mid F_{r}\right]$ is adapled (F_{T} measurable) becuose X is adapted
- Call $y_{T}=E\left[x \mid F_{T}\right]$

Tower
Yiveran $E\left[Y_{T+S} \mid F_{T}\right]=E\left[E\left[X \mid F_{T+S}\right] \mid F_{T}\right]=E\left[x \mid F_{T}\right]=Y_{T}$

$$
E\left[Y_{\text {THS }} \mid F_{T}\right]=Y_{T} \quad \text { Martingale. }
$$

Exercise 2. Ind increments.

$$
X_{i}, X_{c}-X_{s} \Perp \sigma\left(X_{u}, u \leqslant s\right) \quad \text { and } \quad E\left[X_{c}\right]=E\left[X_{0}\right]
$$

X_{t} integrable.
Any integrable, Ind Increment, centered Process is Martingale.

$$
N E\left[\left(x_{r}, T M \mid+\infty \in\left[\left|x_{r}\right|\right]<\infty\right.\right.
$$

- X_{i} is Adapted (Frmeasurable) Natural Filtration

$$
s>I
$$

$$
\begin{aligned}
\left.E_{-}\left|X_{s}\right| F_{r}\right] & =E\left[\left(X_{s}-X_{r}\right)+X_{r} \mid F_{r}\right] \\
& =E\left[X_{s}-X_{r} \mid F_{r}\right]+E\left[X_{r} \mid F_{r}\right]
\end{aligned}
$$

independent inivements $+X_{\Gamma}$ $X_{s}-X_{\tau}$ ind $F_{\Gamma}=\sigma\left(X_{c}\right)$.

$$
\begin{aligned}
& =E\left[x_{s}-x_{t}\right]+X_{\Gamma} \\
& =E\left[x_{s}\right]-E\left[x_{r}\right]+X_{[} \\
& =E\left[x_{0}\right]-E\left[x_{0}\right]+X_{t} \\
& =X_{t}
\end{aligned}
$$

Exercise 2 parrio

$$
x_{s} \text { is cte wrtis }
$$

$$
\text { and } \mathbb{E} X_{c}-X_{S}=0
$$

$$
=\underline{\mathbb{E}\left(X_{E}-X_{S}\right)^{2}}+X_{S}^{2}+0-\{\underbrace{\mathbb{E}\left(X_{t}-X_{S}\right)^{2}}_{=0}+\mathbb{E} X_{S}^{2}+2 \mathbb{E}\left(X_{t}-X_{S}\right) X_{S}\}
$$

$$
=X_{s}^{2}-\mathbb{E} X_{s}^{2} \quad \text { Martingale. }
$$

$$
\begin{aligned}
& \text { - } \mathbb{E}\left[X_{E}^{2}-\mathbb{E} X_{\tau}^{2} \mid F_{S}\right] \\
& =\mathbb{E}\left(X_{\tau}-X_{s}\right)^{2} \mid F_{s}-\mathbb{E}\left[\mathbb{E}\left(X_{\tau} \mp X_{s}\right)^{2} \mid F_{s}\right] \\
& =\mathbb{E}\left[\left(X_{t}-X_{s}\right)^{2}+X_{s}^{2}+2\left(X_{t}-X_{s}\right) X_{s} \mid F_{s}\right]-\mathbb{E}\left(X_{t}-X_{s}+X_{s}\right)^{2} \\
& \text { of } X_{\tau}-X_{S} \Perp F_{S} \Rightarrow\left(X_{\tau}-X_{S}\right)^{2} \Perp F_{S}
\end{aligned}
$$

3) M_{t}

Me^ry is a UI Martingale.

Ty stopping Time.

tary is stopping Time

$$
\begin{aligned}
\mathbb{E} M_{\tau \wedge T_{g}}= & \mathbb{E} M_{t} \mathbb{1}_{\tau<T y} \mathbb{1}_{T_{y<\infty}} \\
& +\mathbb{E} M_{t} \mathbb{1}_{t>T_{y}} \mathbb{1}_{T_{y}<\infty} \\
& +\mathbb{E} M_{t} \mathbb{1}_{t<T_{y}} \mathbb{1}_{T_{y}=\infty}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{M_{t \rightarrow 0} t \rightarrow \infty} & =0+\mathbb{E} \|_{T_{y}<\infty} y+0 \\
& =y \mathbb{P}\left(T_{y}<\infty\right)
\end{aligned}
$$

Nf.MI by Doob

$$
\mathbb{E} M_{i \Lambda T_{y}}=\mathbb{E} M_{0}=a
$$

arutatere imering sumens.

$$
\begin{aligned}
a= & y \mathbb{P}\left(T_{y}<\infty\right) \\
& \mathbb{P}\left(T_{y}<\infty\right)=\frac{y}{a} .
\end{aligned}
$$

Worksheet 4
Exercise 4
Produce of $B M$ is Martingale

$$
\begin{aligned}
& X=B_{1} B_{2} \\
&\left(F_{r}\left(B_{1}, B_{2}\right)\right)_{\tau \geqslant 0}=\sigma\left(B_{1}(s), B_{2}(s) \quad s \leq t\right) \\
& X(t)=B_{1}(t) B_{2}(t) \\
&\left.* E\left[\left|X_{r}\right|\right]=E\left[\left|B_{1} B_{2}\right|\right]={ }^{\text {ind }} E| | B_{1} \mid\right] E\left[\left|B_{2}\right|\right]<\infty \\
& * X_{r} \text { is } F^{\left(B_{1}, B_{2}\right)} \text { Measurable. } \\
&=E\left[X_{r} \mid F_{s}\right]=E\left[B_{1}(t) B_{2}(t) \mid F_{s}\right] \\
&= E\left[\left(B_{1}(t)-B_{1}(s)\right)\left(B_{2}(t)-B_{2}(s)\right) \mid F_{s}\right]+E\left[\left(B_{1}(t)-B_{1}(s)\left|B_{2}(s)\right| F_{s}\right.\right. \\
&=\left.E\left[B_{1}(s)\left(B_{2}(t)-B_{2}(s)+B_{1}(s)\right) \mid F_{s}(t)-B_{2}(s)+B_{2}(s)\right) \mid F_{s}\right]+E\left[B_{1}(s) B_{2}(s) \mid F_{s}\right]
\end{aligned}
$$

ind incr

$$
=E\left[B_{1}(t)-B_{1}(s) \mid \mathbb{A}\right] E\left[B_{2}(t)-B_{2}(s) \mid \mathbb{N}\right]
$$

ind incr

$$
\begin{aligned}
+B_{2} E_{-}^{\left[B_{1}(t)-B_{1}(s)\right]} & +B_{1}(s) E\left[B_{2}(t)-B_{2}(s)\right] \\
& +B_{1}(s) B_{2}(s) \\
= & B_{1}(s) B_{2}(s) \\
& E\left[B_{1}(t) B_{2}(t) \mid F_{s}\right]= \\
& B_{1}(s) B_{2}(s)
\end{aligned}
$$

Examples
2) Sum of ind centered, integrable
$X_{0}, X_{1}, \ldots X_{n}$ centered ind inregrables (L_{1}).

$$
\begin{aligned}
& F_{n}=\sigma\left(x_{0}, x_{1}, \cdots x_{n}\right) \\
& S_{n}=\sum_{i}^{n} x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Triangular ea Minkowski } \\
& \text { • } E\left[\left|S_{n}\right|\right]=E\left[\mid \sum_{i}^{\text {Triangular an Minnows } \left.\left.X_{i} \mid\right] \leqslant E\left[\sum_{i}^{n}\left|X_{i}\right|\right]\right]_{i}^{\text {sid }}=\sum_{i}^{n} E\left|X_{i}\right|<\sigma}\right. \\
& |a+b| \leq|a|+|b| \\
& \|a+b\|_{L^{p}}=\|a\|_{L^{p}}+\|b\|_{L^{p}} \\
& E\left[S_{n+1} \mid F_{n}\right]=S_{n} \\
& =E\left[S_{n}+X_{n+1} \mid F_{n}\right]=E\left[S_{n} \mid F_{n}\right]+E\left[X_{n+1} \mid\right. \\
& =S_{n}+E\left[X_{n+1}\right] \\
& \text { centered } \\
& =S_{n}
\end{aligned}
$$

Example 2
Vaviance of sum (ind ceureved integrable)

$$
\begin{aligned}
& M_{n}=S_{n}{ }^{2}-n \sigma^{2} \\
& E\left[M_{n}\right]=E\left[S_{n}{ }^{2}\right]-E\left[h \sigma^{2}\right] \\
& E\left[\left|M_{n}\right|\right]=E\left[\left|S_{n}^{2}-n \sigma^{2}\right|\right] \leq E\left|S_{n}^{2}\right|+E\left[n \sigma^{2} \mid=\right. \\
& =E\left[\sum_{i j}^{n} x_{i} x_{j}\right]+n \sigma^{2} \\
& \text { rund } \\
& \stackrel{\text { und }}{=} E\left[\sum_{i \neq j}^{n} x_{i} x_{j}+\sum_{i}^{n} x_{i}{ }^{2}\right]+n \sigma^{2} \\
& =E\left[\sum_{i \neq j} x_{i} x_{j}\right]+E\left[\sum_{i} x_{i}{ }^{2}\right]+n r^{2} \\
& \text { Minkarki } \\
& \text { Z } E \sum_{i \neq j}\left(x_{i} x_{j}\right)+E \sum\left(X_{i}{ }^{2}\right)+n \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{n d}{=} \sum_{i=j} E\left[X_{i}\right] E\left[x_{j}\right]+k \sigma^{2}+n \sigma^{2} \\
& =n \sigma^{2}+n \sigma^{2}=2 n \sigma \\
& \angle \infty \\
& E\left[M_{n+1} \mid F_{n}\right]=E\left[S_{n+1}^{2}-(n+1) \sigma^{2} \mid F_{n}\right] \\
& =E\left[\left(S_{n}+X_{n+1}\right)^{2}-(n+1) r^{2} \mid F_{n}\right] \\
& =E\left[S_{n}{ }^{2}+2 S_{n} X_{n+1}+X_{n+1}^{2}-n \sigma^{2}-\sigma^{2} \mid F_{n}\right] \\
& =-n \sigma^{2}-\sigma^{2}+2 \overbrace{E\left[S_{n} \mid F_{n}\right]}^{\text {Sn }} \overbrace{E\left[X_{n+1} \mid F_{n}\right]}^{E\left[X_{n+1}\right]=0}+ \\
& +E\left[S_{n}{ }^{2} \mid F_{n}\right]+\underbrace{E\left[X_{n+1}{ }^{2} \mid F_{n}\right]}_{E\left[X_{n+1}{ }^{2}\right]=\sigma^{2}} \\
& =-n r^{2}+E\left[S_{n}{ }^{2} \mid F_{n}\right] \\
& \text { Any } f\left(\tau, B_{\tau}\right) \text { is } \\
& =\int n^{2}-n r^{2} \\
& \text { Ex } 1.5 .1 \\
& \text { adapled } F_{\tau} \\
& B_{t}{ }^{3}-c
\end{aligned}
$$

Example 3 Wald's Martingale.
Nr. Sum ind centered integrable

$$
\begin{aligned}
& M_{n}=\frac{\exp \left(\lambda S_{n}\right)}{\left(E\left[\exp \lambda x_{1}\right]\right)^{n}} \\
& \text { - } E\left|M_{n}\right|=E\left|\frac{\exp \lambda s_{n}}{\left.\left(E \mid \exp \lambda x_{1}\right]\right)^{n}}\right|=E \left\lvert\, \frac{\exp \left(\lambda x_{1}\right) \exp \left(\lambda x_{2}\right) \ldots}{\left(E\left[\exp \lambda x_{1}\right]\right)^{n}}\right. \\
& \text { ind } \frac{E\left|e^{\lambda x_{1}}\right| E\left|e^{\lambda x_{2}}\right| \ldots}{\left.\left(E \mid e^{\lambda x_{1}}\right]\right)^{n}} \\
& \operatorname{expx>0} \quad \text { sid } \frac{\left(E e^{\lambda x_{1}}\right)^{n}}{\left(E\left(e^{\lambda x_{1}}\right)\right)^{n}}=1 \text {. } \\
& \text { - } E\left[M_{n+1} \mid F_{n}\right]=E\left[\left.\frac{e^{\lambda s_{n+1}}}{\left.\left(E \mid \exp \lambda x_{1}\right\rceil\right)^{n+1}} \right\rvert\, F_{n}\right]=E\left[\left.\frac{e^{\lambda s_{n}} e^{\lambda x_{n+1}} \mid F_{n}}{\left.\left(E \mid e^{\lambda x_{1}}\right]\right)^{n+1}} \right\rvert\,\right. \\
& \stackrel{\text { ind }}{=} \frac{E\left[e^{\lambda x_{n+1}}\right]}{E\left[e^{\lambda x_{1}}\right]} \frac{e^{\lambda s_{n}}}{\left(E\left[e^{\lambda x_{1}}\right]\right)^{n}} \\
& \stackrel{\text { üd }}{=} \frac{e^{\lambda s_{n}}}{E\left[e^{\lambda x_{1}}\right]^{n}}=M_{n} \text {. }
\end{aligned}
$$

Example 4 Docbs Martingale
Accumulating Data

$$
\begin{aligned}
& M_{n}=E\left[X \mid F_{n}\right] \\
& E\left[\left|M_{n}\right|\right]=E\left[\left|E\left[X \mid F_{n}\right]\right|\right] \leq E\left[E\left[|X| \mid F_{n}\right]\right] \text { 4/PQ9 } \\
& \text { Rule? } \\
& =E[|X|]<\infty \\
& x \in L_{1} . \\
& E\left[M_{n+1} \mid F_{n}\right]=E\left[E\left[X \mid F_{n+1}\right] \mid F_{n}\right] \stackrel{\text { lowas }}{=} E\left[X \mid F_{n}\right] \\
& =M n \text {. }
\end{aligned}
$$

Proposition
M a Marringale, f convex $\Rightarrow f(M)$ is SubMartingale.

$$
\begin{aligned}
M_{n}= & E\left[M_{n+1} \mid F_{n}\right] \\
F\left(M_{n}\right)= & f\left[E\left[M_{n+1} \mid F_{n}\right]\right] \leqslant E\left[f\left(M_{n+1}\right) \mid F_{n}\right] \\
& f\left(M_{n}\right) \leqslant E\left[f\left(M_{n+1}\right) \mid F_{n}\right]
\end{aligned}
$$

subMartingale
iii) Doob's Inequality

Yt a non negative rub martingale

$$
\therefore \mathbb{P}\left(\sup \left|Y_{t}^{p}\right|^{p}>c\right) \leqslant \frac{E\left(Y_{t}^{p}\right)}{c^{p}} \quad c>0
$$

M_{i} is non negative Martingale
Any Martingale is also a sub/super Martingale

$$
\begin{aligned}
\Rightarrow & \mathbb{P}\left(\sup _{0 \leqslant t \leqslant T} M_{t} \geqslant a\right) \leqslant \frac{\mathbb{E}\left[Y_{c}\right]}{a}=\frac{1}{a} \\
& \mathbb{E}_{Y_{t}}=e^{0}=1
\end{aligned}
$$

iv) $\mathbb{P}\left(\sup _{c} \beta_{c}>c\right)=\mathbb{P}\left(\sup e^{\lambda \lambda_{t}} \geqslant e^{\lambda_{c}}\right)$

optimize right hand side respect to λ

$$
\begin{array}{r}
\frac{d}{d \lambda} \frac{1}{2} \lambda^{2} t-\lambda c=\lambda c-c=0 \\
\Rightarrow \lambda=\frac{c}{T} \\
\Rightarrow \mathbb{R}\left(\sup B_{\tau}>c\right) \leqslant \underbrace{e^{\frac{1}{2} \frac{c^{2} T}{T^{2}}-\frac{c^{2}}{T}}}_{e^{-\frac{1}{2} c^{2}}}
\end{array}
$$

change $c \rightarrow C$

$$
\Rightarrow \quad \hat{\|}\left(\sup B_{t} \geqslant c \bar{F}\right) \leqslant e^{-\frac{1}{2} c^{2} \bar{t}}
$$

7)

$$
\begin{aligned}
& M_{t}=e^{\lambda B_{t}-\lambda^{2} t / 2}, \mathbb{E}\left|M_{t}\right|=\mathbb{E} M_{t}=1<\infty \\
& \mathbb{E}\left|M_{t}\right| \stackrel{c s}{c s} \leqslant\left(\mathbb{E}\left(M_{t}\right)^{2}\right)^{1 / 2}=e^{-\lambda^{2} t} \frac{\mathbb{E}}{2} e^{\lambda\left(B_{t}-B_{s}+B_{s}\right)} \\
&=e^{-\frac{\lambda^{2} t}{2}} \underbrace{\left(\mathbb{E} e^{2 \lambda B_{t}}\right)^{1 / 2}}_{\text {monention generaton }} \\
&=e^{-\lambda^{2} t / 2}\left(e^{\left(\frac{1}{2} \lambda^{2}(2)\right.}\right)^{1 / 2} \\
&=e^{-\lambda^{2} t / 2+\lambda^{2}}<\infty \quad \forall t \\
& \begin{aligned}
& \mathbb{E}\left[M_{t} \mid F_{s}\right]=\mathbb{E}\left[\left.e^{\lambda B_{t}-\frac{\lambda^{2} t}{2}} \right\rvert\, F_{s}\right] \\
&=\mathbb{E}\left[\left.e^{\lambda\left(B_{t}-B_{s}+B_{s}\right)-\frac{\lambda^{2} \sigma}{2}} \right\rvert\, F_{s}\right] \\
&=e^{\lambda B_{s}} e^{-\frac{\lambda^{2} t}{2}} \underbrace{\mathbb{E}\left[e^{\lambda\left(B_{t}-B_{s}\right)}\right]} \\
&=e^{\frac{1}{2} \lambda^{2}(t-s)} \\
& \lambda^{\lambda B_{s}-\frac{\lambda^{2} s}{2}}=M_{s} .
\end{aligned}
\end{aligned}
$$

Me is UI
becave

$$
\begin{aligned}
\sup _{t} \mathbb{E}\left|M_{t}\right|^{p} & =\sup _{t} e^{-\frac{\lambda^{2} t p}{2}} \underbrace{e^{-1}}_{e^{\frac{p^{2} \lambda^{2} t}{2}} e^{p \lambda \rho_{t}}} \\
& =\sup _{t} e^{\frac{\lambda^{2} t}{2}\left(p^{2}-p\right)} \\
& <\infty \quad \text { just for } p=1
\end{aligned}
$$

$$
\text { so } \exists M_{\infty} \text { in } H^{\wedge}
$$

consider $M t \wedge T_{a}$ is also UI

$$
\mathbb{E} M_{\tau \Lambda T a}=\mathbb{E} M_{\tau \wedge T a} \mathbb{1}_{T a<\infty}+\mathbb{E} M_{\tau \Lambda T a} \mathbb{1}_{T a=\infty}
$$

Docb ophenal $\quad \lim _{t \rightarrow \infty}$

$$
\begin{aligned}
& 1=\mathbb{E} M_{\text {Ta }} 1_{\text {Ta<n }}+0 \\
& 1=\mathbb{E} e^{-\frac{\lambda^{2} T a}{2}+\lambda a} \\
& \frac{1}{M_{\Gamma a}}=\mathbb{P}\left(T_{a}<\infty\right) \quad e^{-\lambda a}=\mathbb{E} e^{-\frac{\lambda^{2} \Gamma a}{2}} \\
& \begin{array}{l}
1=\mathbb{E} e^{-\frac{\lambda^{2} T a}{2}+\lambda a} \\
e^{-\lambda a}=\mathbb{E} e^{-\frac{\lambda^{2} T a}{2}} \\
\frac{\lambda^{2}}{2}=x \quad \lambda=\sqrt{2 x} \\
e^{-\sqrt{2 x} a}=\mathbb{E} e^{-\lambda T a}
\end{array} \\
& e^{\frac{1}{\lambda a-\lambda \frac{a^{2} a}{2}}}=
\end{aligned}
$$

WORKSHEET 5
 WIENER'S INTEGRAL

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $\left(B_{t}\right)_{t \geq 0}$ a (real) Brownian motion.

Exercise 1.

(1) Check that the random variable $Y=\int_{0}^{+\infty} e^{-s} \mathrm{~d} B_{s}$ is well-defined.
(2) Give the law of Y.

Exercise 2. Find two admissible functions f and g such that $f \leq g$ and

$$
\mathbb{P}\left[\int_{0}^{1} f(s) \mathrm{d} B_{s}>\int_{0}^{1} g(s) \mathrm{d} B_{s}\right]>0 .
$$

Exercise 3. Let f be an admissible function. Show that the process $\left(\int_{0}^{t} f(s) \mathrm{d} B_{s}\right)_{t \geq 0}$ is a Gaussian process. Compute its mean and its covariance.

Exercise 4. Let $\left(X_{t}\right)_{t \geq 0}$ be given by:

$$
\forall t \geq 0, \quad X_{t}=\int_{0}^{t^{1 / 2}}(2 s)^{1 / 2} \mathrm{~d} B_{s}
$$

Show that $\left(X_{t}\right)$ is a Gaussian process. Compute its mean and its covariance. Deduce that X is a Brownian motion.

Exercise 5. Let V_{0} be a random variable independent of B and of Gaussian law $\mathcal{N}(0,1 / 2)$. We define the process $\left(V_{t}\right)_{t \geq 0}$ (so-called Ornstein-Uhlenbeck stationary process) by:

$$
\forall t \geq 0, V_{t}=\exp (-t) V_{0}+\int_{0}^{t} \exp [-(t-s)] \mathrm{d} B_{s}
$$

(1) Show that $\left(V_{t}\right)_{t \geq 0}$ is a Gaussian process.
(2) For any $a>0$, prove that $\left(V_{a+t}\right)_{t \geq 0}$ and $\left(V_{t}\right)_{t \geq 0}$ have the same distribution.

Exercise 6. Let $T>0$. Show that

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left(\sum_{i=1}^{n}\left(B_{T i / n}-B_{T(i-1) / n}\right)^{2}-T\right)^{2}\right]=0
$$

Exercise 7. Let $T>0$. Show that

$$
\int_{0}^{T}\left(1+\frac{B_{t}}{n}\right)^{n} \mathrm{~d} B_{t} \xrightarrow[n \rightarrow \infty]{\mathrm{L}^{2}} \int_{0}^{T} \exp \left(B_{t}\right) \mathrm{d} B_{t} .
$$

Check first that the integrals are well-defined.

Exercise 8. Let $T>0$. For a given $n \geq 1$, we define the process

$$
\forall n \geq 0, \forall t \geq 0, \quad B_{t}^{n}=\sum_{i=0}^{n-1} B_{T i / n} \mathbf{1}_{(T i / n, T(i+1) / n]}(t)
$$

(1) Prove that $\left(B_{t}^{n}\right)_{t \geq 0}$ is a simple process w.r.t. the filtration generated by B.
(2) Show that

$$
\lim _{n \rightarrow+\infty} \mathbb{E} \int_{0}^{T}\left|B_{t}^{n}-B_{t}\right|^{2} d t=0
$$

(3) What is the limit, in $L^{2}(\Omega)$, of

$$
\left(\int_{0}^{T} B_{t}^{n} \mathrm{~d} B_{t}\right)_{n \geq 1} ?
$$

(4) Prove that

$$
B_{T}^{2}=2 \int_{0}^{T} B_{t}^{n} \mathrm{~d} B_{t}+\sum_{i=1}^{n}\left(B_{T i / n}-B_{T(i-1) / n}\right)^{2}
$$

(5) By the previous exercise, deduce that

$$
B_{T}^{2}=2 \int_{0}^{T} B_{t} \mathrm{~d} B_{t}+T
$$

Worksheet 5
1)

$$
\begin{aligned}
& \int_{0}^{t} f(s) d B_{s} \sim N\left(0, \int_{0}^{t} f^{2}(s) d s\right) \\
& Y=\int_{0}^{\infty} e^{-s} d B_{s}
\end{aligned}
$$

Well define if $E\left[\int f^{2} d s\right]<\infty$

$$
\begin{aligned}
& =E\left[\int_{0}^{\infty}\left(e^{-s}\right)^{2} d s\right]=E\left[\left.\frac{e^{-2 s}}{-2}\right|_{0} ^{\infty}\right] \\
& =E\left[\frac{1}{2}\right]=\frac{1}{2}<\infty \\
& \Rightarrow N\left(0, \frac{1}{2}\right)
\end{aligned}
$$

2) $\mathbb{T}\left[\int_{0}^{1} f(s) d B_{s}>\int_{0}^{1} g(s) d B_{s}\right]>0 \quad$ s.t $f<g$
example $f=-k \quad g=k$.

$$
\begin{gathered}
\int_{0}^{1}-k d B_{s}=-k B_{1} \\
\int_{0}^{1} k d B_{s}=k B_{1} \\
\mathbb{P}\left[-k B_{1}>k B_{2}\right]=\mathbb{P}\left[2 k B_{2}<0\right]=\frac{1}{2} .
\end{gathered}
$$

Exercise 4

$$
\begin{aligned}
& X_{t}=\int_{0}^{t^{1 / 2}}(2 s)^{1 / 2} d B_{s} \sim N\left(0, \int_{0}^{\sqrt{t}} 2 s d s\right) \\
& \int_{0}^{\sqrt{t}} 2 s d s=\left.s^{2}\right|_{0} ^{\sqrt{t}}=t \quad \Rightarrow N(0, t)
\end{aligned}
$$

If a and b have mean zero

$$
\begin{aligned}
\operatorname{cov}(a, a+b) & =E[a(a+b)]=E\left[a^{2}+a b\right]=E\left[a^{2}\right]+E[a b] \\
& =\operatorname{var}(a)+\operatorname{cov}(a, b)
\end{aligned}
$$

$$
\begin{aligned}
& \tau\left\langle t^{\prime} ; \operatorname{cov}\left(\int_{0}^{\tau}, \int_{0}^{\tau^{\prime}}\right)\right.=\operatorname{cov}\left(\int_{0}^{\tau}, \int_{0}^{t}+\int_{t}^{t^{\prime}}\right) \\
&=\operatorname{cov}\left(\int_{0}^{t}, \int_{0}^{t}\right)+\operatorname{cov}\left(\int_{0}^{\tau}, \int_{\tau^{\prime}}^{t}\right) \\
&{\operatorname{but} \int_{t^{\prime}}^{t} \| \int_{0}^{t}}^{t}=\operatorname{var}\left(\int_{0}^{t}\right) \\
&=t \quad \text { because } \tau<t^{\prime}
\end{aligned}
$$

So for sect twill be τ

$$
\Rightarrow \operatorname{cov}\left(X_{\tau}, X_{\tau}\right)=m f\left(t^{t}, t\right)
$$

Exercise 3
$I t \hat{o}$

$$
\begin{aligned}
& \int_{0}^{\tau} f(s) d B_{s}=\lim _{n \rightarrow \infty} \sum_{n=1}^{n} f\left(t_{i-1}\right)\left(B_{\tau_{i}}-B_{\tau_{i-1}}\right) \\
& S_{n}=\sum_{i=1}^{n} \underbrace{f\left(t_{i-1}\right)}_{\text {cosiant }} \underbrace{\left(B_{\tau_{i}}-B_{\tau_{i-1}}\right)}_{N\left(0, t_{i}-\tau_{i-1}\right)} \sim N
\end{aligned}
$$

as $\Delta_{i} B$ are independent increments and stationary increments We have a sum of independent garssians which is also Gaussian

$$
\begin{aligned}
& \text { Now } \\
& \mu_{n}=E\left[S_{n}\right]=E\left[\sum^{n} \cdots\right]=\sum_{i=1}^{n} f\left(r_{i-1}\right) \underbrace{E\left[\Delta_{i} B\right]}_{0}=0 \\
& \sigma_{n}^{2}=E\left[S_{n}{ }^{2}\right]=E\left[\sum_{i} \sum_{j} f\left(t_{i-1}\right) f\left(t_{j-1}\right) \Delta_{i} B \Delta_{j} B\right] \\
& \text { convindistribution } \quad i \neq j \Rightarrow \Delta_{i} B \| \Delta_{j} B \\
& \mu_{n} \longrightarrow \mu_{1}=0 \\
& \sigma_{n}^{2} \longrightarrow \sigma=\int_{\text {so the charact erishe }}^{r} f^{2} d s \\
& \text { so the characteristic } \\
& \text { function of } S n \\
& \begin{array}{l}
\text { goes to } \\
N\left(0, \int_{0}^{t} f^{2} d s\right)
\end{array} \\
& \text { because mean } \mathbb{L}^{2} \\
& \text { cons. of the sum } \\
& \text { implies hours } \\
& \text { in Prob. } \\
& \text { and dist. } \\
& =\sum_{i} \sum_{j} f\left(\tau_{i-1}\right) f\left(i_{j-1}\right) E\left[\Delta_{i} B\right] E\left[\Delta_{j} B\right]=0 \\
& i=j=E \sum_{i}^{n} f_{\left(\tau_{i-1}\right)}^{2}\left(\Delta_{i} B\right)^{2} \\
& =\sum^{n} f^{2}\left(t_{i-1}\right) \underbrace{E\left(\Delta_{i} B\right)^{2}}_{d_{i} t=\operatorname{var}\left(\Delta_{i} B\right)} \\
& =\sum_{\tau_{i-1}}^{2} \Delta_{i} t
\end{aligned}
$$

ib) $\lim \mathbb{E}\left(\sum\left(B_{\frac{i}{n}}-B_{\frac{T(j-1)}{n}}\right)^{2}-\longrightarrow\right)^{2}$

$$
\begin{array}{r}
\operatorname{lm} \mathbb{E}\left[\left(\sum\left(B_{\frac{T}{n}}\right)^{2}\right)^{2}+T^{2}-2 T\right. \\
+T^{2}-2 T
\end{array}
$$

$\lim \mathbb{E}\left(\sum\left(\Gamma_{n} B_{1}\right)^{2}\right)^{2}+T^{2}-2 T^{2}$
$\lim _{\mathbb{E}}\left(\frac{T}{n} n B_{1}^{2}\right)^{2}+$
$\operatorname{lm} T^{2} \underbrace{\mathbb{E} B_{1}^{4}}_{\substack{\text { kurtosis } \\ \text { normal: }=3}}-2 T^{2}=T^{2}$

Exercise 7.

Dominated Convergence
Let $\lim f_{n}=f$ poontmuse
s.t $\left|f_{n}\right| \leqslant g(\lambda)$

Then $\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|=0$
also $\lim \int f_{n}=\int \lim f_{n}=\int f$
We will show that $\lim \left(1+\frac{B_{t}}{n}\right)^{n}=e^{B_{t}}$
That in $\left(\int_{0}^{t}\left(1+\frac{B_{c}}{n}\right)^{n} d B_{t}-\int_{0}^{i} e^{B_{t}} d B_{L}\right)^{2} \quad \begin{aligned} & \text { both are } \\ & \text { well defined }\end{aligned}$
means

$$
f_{n}=\left(1+\frac{B_{T}}{n}\right)^{n}-e^{B_{L}}
$$

pow $\quad \lim f_{n}=0$
as $(a-b)^{2} \geqslant 0$

$$
\begin{aligned}
a^{2}+b^{2}-2 a b & \geqslant 0 \quad a^{2}+b^{2}
\end{aligned} \quad 2 a b-2 b^{2} \geqslant(a+b)^{2}
$$

We can bound fo by $2\left(1+\frac{B_{\tau} \tau}{n}\right)^{2 n}+2 e^{2 B \tau}=4 e^{2 B_{t}}<0$ because
So ne can say $\operatorname{lm} \int f_{n}=\int \operatorname{lm} f_{n}=\int f$. well defined

$$
\begin{aligned}
& \left.\lim \int\left(1+\frac{B_{t}}{n}\right)^{n}-e^{D_{\tau}}\right]^{2} d B_{\tau} \\
= & \int \operatorname{An} 0 d B_{\tau}=0 .
\end{aligned}
$$

For checking that integrals are well define

$$
\begin{aligned}
& \int_{0}^{t} E\left[C_{s}\right]^{2} d t<\infty \\
& E\left[e^{\lambda z}\right]=e^{\mu \lambda+\frac{1}{2} \sigma^{2} \lambda^{2}} \\
& E\left[e^{i \lambda z}\right]=e^{i \mu \lambda-\frac{1}{2} \sigma^{2} \lambda^{2}} \\
& C_{S}=e^{B_{t}} \int_{0}^{t} \underbrace{E\left[e^{2 B_{t}}\right]}_{\begin{array}{c}
\text { Momartum } \\
\text { Gerevatioy } \\
\text { function }
\end{array}} d \tau=\int_{0}^{t} e^{\frac{1}{2}(t)^{2}(2)^{2}} d t= \\
& =\int_{0}^{t} e^{2 t} d t<\infty \\
& C_{s}=\left(1+\frac{B_{t}}{n}\right)^{2 n}=e^{2 n \log \left(1+\frac{B_{t}}{n}\right)} \\
& \text { as } 1+x \leqslant e^{x} \\
& \log (1+x) \leq x \\
& \leqslant e^{2 n \frac{B_{t}}{n}}=e^{2 B t} \text { (sane as before) }
\end{aligned}
$$

so both integrals are well defined.

Exercise 5

$$
\begin{aligned}
& V_{0} \sim \underbrace{V_{t}=\underbrace{e^{-t} V_{0}+e^{2 t}}_{N\left(0, \frac{1}{2}\right)} \int_{0}^{t} e^{2 s} d b_{s})}_{N\left(0, \frac{e^{-t}}{2}\right)}
\end{aligned}
$$

sum of normal is normal

$$
\begin{aligned}
& \text { if ind } \Rightarrow N\left(m_{1}+m_{2}, v a r+v a r_{2}\right) \\
& \text { nor ind } \Rightarrow N\left(m_{1}+m_{2}, \text { var }+\operatorname{var}_{2}+2 \operatorname{cov} 12\right) \\
& \Rightarrow V_{t} \text { is normal }
\end{aligned}
$$

V_{a+t}
$E V_{a+t}=0+0=0$
$\operatorname{var} V_{a+t}=e^{-2(t+a)} \operatorname{var} V_{0}+e \operatorname{var} \int_{0}^{-2(t+a)} e^{(t+h)} d B_{S}$

$$
=\frac{e^{-2(t+a)}}{2}+\left.e^{-2(t+a)} \frac{e^{2 s}}{2}\right|_{0} ^{t+a}
$$

$$
=\frac{e^{-2(r+a)}}{2}+e^{-2(t+a)}-\frac{1}{2}\left(e^{2(t+h)}-1\right)
$$

$$
=\frac{1}{2} \text { ind } t, a_{1}
$$

$$
\operatorname{cov}\left(V_{t}, V_{L^{\prime}}\right)=\frac{e^{-t-t^{\prime}}}{2}+e^{-t-t^{\prime}}\left(\frac{e^{2 t}-1}{2}\right)
$$

$$
\begin{aligned}
& \operatorname{cov}\left(V_{\tau}, V_{\tau^{\prime}}\right) \\
& \operatorname{cov}(A+B, C+D)=\operatorname{cov} A C+\operatorname{cov} A D+\operatorname{cov} B C+\operatorname{cov} B D \\
& \operatorname{cov}\left(e^{-L V_{0}}, e^{-t)} V_{0}\right)=e^{-t-t)} \frac{1}{2} \\
& \operatorname{cov}\left(e^{-\tau} V_{0}, e^{-t} \int_{0}^{\tau t}\right)=e^{-2 t)} \cdot 0 \quad V_{0} \mathbb{\Perp} \int_{0}^{t} \\
& \operatorname{cov}\left(e^{-t} \int_{0}^{t}, e^{-\tau} V_{0}\right)=0 \\
& \begin{aligned}
\operatorname{cov}\left(e^{-t} \int_{0}^{t}, e^{-t} \int_{0}^{t}\right) & =e^{-t-t)}(\operatorname{cov}\left(\int_{0}^{t}, \int_{0}^{t}\right)+\underbrace{\operatorname{cov}\left(\int_{0}^{t}, \int_{t}^{t)}\right)}_{c} \\
& =e^{-t-t)}\left(\operatorname{vas} \int_{0}^{t}\right)
\end{aligned} \\
& \left.\Rightarrow \operatorname{cov} V_{t}, V_{t}\right)=\frac{e^{-t-t)}}{2}+e^{-t-\tau)} \int_{a}^{\tau} e^{2 s} d s \\
& =\frac{e^{-t-L^{\prime}}}{2}+e^{-\tau-t^{\prime}}\left(\frac{\left.e^{2 t}-1\right)}{2}\right. \\
& =e^{-\tau-t}\left(\frac{e^{2 \tau}}{2}\right) \\
& \text { if } I^{\prime}=\tau \Rightarrow \operatorname{cov} V_{\tau} V_{t}=\operatorname{var} V_{t}=\frac{1}{2}
\end{aligned}
$$

march with

$$
\operatorname{vav} V_{t}=
$$

WORKSHEET 6

ITO'S FORMULA

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $\left(B_{t}\right)_{t \geq 0}$ a (real) Brownian motion.

Exercise 1. For λ and θ in \mathbb{R}, we consider the process

$$
\forall t \geq 0, \quad X_{t}=\exp (-\lambda t) \cos \left(\theta B_{t}\right)
$$

(1) Compute $d X_{t}$ for $t \geq 0$.
(2) What are the values of (λ, θ) for which the $d t$-term in $d X_{t}$ vanishes?
(3) Deduce $\mathbb{E}\left[\cos \left(\theta B_{t}\right)\right]$ for $t \geq 0$.

Exercise 2. For r and σ in \mathbb{R}, we consider the process

$$
\forall t \geq 0, \quad X_{t}=\exp \left(r t+\sigma B_{t}\right)
$$

(1) Compute $d X_{t}$ for $t \geq 0$.
(2) What are the values of (r, σ) for which the $d t$-term vanishes?
(3) For the values of r and σ obtained above, show that, for all $0 \leq s<t$,

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}
$$

where \mathcal{F}_{s} is the σ-field generated by $\left(B_{u}\right)_{0 \leq u \leq s}$.
Exercise 3. Let n be an integer larger than 1 .
(1) Show that

$$
\forall t \geq 0, B_{t}^{2 n}=2 n \int_{0}^{t} B_{s}^{2 n-1} d B_{s}+n(2 n-1) \int_{0}^{t} B_{s}^{2 n-2} d s
$$

(2) Deduce that

$$
\mathbb{E}\left(B_{1}^{2 n}\right)=(2 n-1) \mathbb{E}\left(B_{1}^{2 n-2}\right)
$$

(3) Let Z be an $\mathcal{N}(0,1)$ Gaussian variable. Deduce from the above expression that

$$
\mathbb{E}\left(Z^{2 n}\right)=[(2 n)!] /\left[2^{n} \times n!\right]
$$

Exercise 4. Show that the following processes are martingales w.r.t. the filtration generated by B :
(1) $\forall t \geq 0, X_{t}=\exp (t / 2) \cos \left(B_{t}\right)$.
(2) $\forall t \geq 0, Y_{t}=\exp (t / 2) \sin \left(B_{t}\right)$.
(3) $\forall t \geq 0, Z_{t}=\left(B_{t}+t\right) \exp \left(-B_{t}-t / 2\right)$.
(4) $\forall t \geq 0, W_{t}=B_{t}^{3}-3 t B_{t}$.

Exercise 5. Let $\left(B_{t}\right)_{t \geq 0}$ be an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motion. Show that $\left(B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}\right)_{t \geq 0}$ is a martingale w.r.t. to the filtration $\left(\sigma\left(\bar{B}_{s}, s \leq t\right)\right)_{t \geq 0}$.
Exercise 6. Let $\left(B_{t}\right)_{t \geq 0}$ be an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motion and $\left(b_{t}\right)_{t \geq 0}$ be a continuous and $\left(\mathcal{F}_{t}\right)_{t \geq 0^{-}}$ adapted process. Set

$$
\forall t \geq 0, \quad X_{t}=\int_{0}^{t} b_{s} d s+B_{t}
$$

We assume that there exist two constants K and λ such that

$$
\forall t \geq 0, \forall \omega \in \Omega,\left|b_{t}(\omega)\right| \leq K, b_{t}(\omega) X_{t}(\omega) \leq-(\lambda / 2) X_{t}^{2}(\omega)
$$

(1) Show that for all $T \geq 0, \sup _{0 \leq t \leq T} \mathbb{E}\left[X_{t}^{2}\right]<+\infty$.
(2) Applying Itô's formula to $\left(\exp (\lambda t) X_{t}^{2}\right)_{t \geq 0}$, show

$$
\sup _{t \geq 0} \mathbb{E}\left[X_{t}^{2}\right]<+\infty
$$

Work sheet 6
Exercise 1. $\quad X_{t}=e^{-\lambda t} \cos \left(\theta B_{t}\right)$
a)

$$
\begin{aligned}
& d f(\tau, x)=f_{1} d \tau+f_{2} d x+\frac{1}{2}\left[f_{11} d t^{2}+f_{22} d x^{2}+2 f_{22} d \tau d x\right. \\
& f\left(\tau, B_{\tau}\right)=X_{\tau} \quad f(t, x)=e^{-\lambda \tau} \cos \theta x \\
& f_{1}=-\lambda X_{t} \quad f_{2}=-e^{\lambda t} \theta \sin \theta x \quad f x / 2 \pi \\
& f_{22}=-\theta^{2} x_{12} e^{\lambda t} \cos \theta x \\
& \text { plug in } x=B_{\tau}
\end{aligned}
$$

Keep $d \beta_{\tau}^{2}=d t$

$$
\begin{array}{r}
d f\left(c, B_{t}\right)=d X_{\tau}=\left[-\lambda X_{\tau}-\frac{\theta^{2}}{2} X_{\tau}\right] d t \\
d X_{\tau}=\left(-\lambda-\frac{\theta^{2}}{2}\right) X_{\tau} d t-e^{\lambda \tau} \theta \sin \theta B_{\tau} d B_{\tau} \\
\quad \theta B_{\tau} d B_{\tau}
\end{array}
$$

b) $-\lambda-\frac{\theta^{2}}{2}=0 ; \quad \lambda=\left.\frac{-\theta^{2}}{2}\right|_{-1 /}$
c) It is a Martingale $\quad X_{t}=X_{0}+\int_{0}^{t}-\theta e^{-\lambda \tau} \sin E \beta_{t} d \beta_{2}$

$$
\begin{aligned}
& E\left[X_{t} \mid F_{0}\right]=X_{0}=e^{-\lambda t} \cos \theta B_{t} \\
& E\left[E\left[X_{t} \mid F_{0}\right]\right]=E\left[X_{t}\right]=E\left[X_{0}\right] \\
& X_{0}=e^{0} \cos \left(\partial B_{0}\right)=1 \\
& 1=E\left[e^{-\lambda t} \cos \left(\theta B_{t}\right)\right] \\
& e^{\lambda[}=E\left[\cos \left(\theta B_{t}\right)\right]
\end{aligned}
$$

Exercise 2
a)

$$
\begin{aligned}
& X_{\tau}=e^{r t+\sigma B_{t}} \quad d f(\tau, x)=f_{1} d t+f_{2} d x+ \\
& X_{\tau}=f\left(\tau, B_{t}\right) \\
& \frac{1}{2}\left[f_{11} d t^{2}+f_{22} d x^{2}+2 f_{12} d \tau_{d x}\right. \\
& f(t, x)=e^{r t+\sigma x} \\
& f_{1}=r f \quad f_{2}=r f \quad f_{22}=\sigma^{2} f \\
& d f\left(t, B_{t}\right)=r f d t+\sigma f d B_{t}+\frac{1}{2} \sigma^{2} f d t \\
& =\left(r+\frac{1}{2} \sigma^{2}\right) f d t+\sigma f d B_{t} \\
& d X_{t}=\left(r+\frac{1}{2} \sigma^{2}\right) X_{\tau} d \tau+\sigma X_{t} d B_{\tau} \text {. }
\end{aligned}
$$

b) $r=-\sigma^{2} / 2$
c) $X_{t}=X_{0}+\int_{0}^{t} \sigma X_{t} d B_{\tau}$ is Martingale.
$\forall t \quad X_{t}$ is F_{t} measurable.

$$
\begin{aligned}
& \left.E\left[X_{t} \mid F_{S}\right]=X_{0}+E\left[\int_{0}^{t} \sigma X_{L} d Q_{t}\right] F_{S}\right] \\
& \int_{0}^{5} c F_{S}=x_{0}, \int_{0}^{s} \sigma x_{t} d B_{t}+E\left[\int_{S}^{t} \sigma x_{t} d B_{t} \mid F_{S}\right] \\
& \int_{s}^{t} \mathbb{L} F_{s} \\
& =x_{0}+\cdots \cdot+E[\underbrace{\left.\int_{S}^{t} \sigma x_{t} d B_{\tau}\right]}_{\nu\left(0, \int_{\rho}^{t}\left(f^{2} x_{t}^{2}\right) d S\right)} \\
& \left.=x_{0}+\int_{0}^{5} \propto x_{t}\right\lrcorner B_{r} \text {. }
\end{aligned}
$$

Exercise 3
a) $f(t, x)=x^{2 n} \quad f_{1}=0 \quad f_{2}=2 n x^{2 n-1} \quad f_{22}=2 n(2 n-1) x^{2 n-2}$

$$
\begin{aligned}
& d f\left(t, B_{t}\right)=\left(f_{1}+\frac{1}{2} f_{22}\right) d \tau+f_{2} d B_{t} . \\
& B_{t}^{2 n}-B_{0}^{22^{\prime}}=\int_{0}^{t} \frac{1}{2} 2 n(2 n-1) B_{t}^{2 n-2} A_{0} d t+\int_{0}^{t} 2 n B_{t}^{2 n-1} d B_{t}
\end{aligned}
$$

b)

$$
\begin{aligned}
& E\left[B_{t}^{2 n}\right]=n(2 n-1) E \int_{0}^{5} B_{t}^{2 n-2} d t+2 n E \underbrace{\int_{0}^{t} B_{t}^{2 n-1} d B_{t}}_{\text {scaling } c^{1 / 2} B_{t} \leqq B_{c t}}
\end{aligned}
$$

$$
\begin{aligned}
&\left(t^{1 / 2} B_{1}^{2 n-2} \leqq B_{t}^{2 n-2}\right. \\
& t^{n-1} B_{1}^{2 n-2} \triangleq B_{t}^{2 n-2} \\
&= n(2 n-1) E\left[B_{1}^{2 n-2}\right] \int_{0}^{t} t^{n-1} d t \\
& E\left[B_{t}^{2 n}\right]= n(2 n-1) E\left[B_{1}^{2 n-2}\right] \frac{t^{n}}{K} \\
& E\left[\left(t^{1 / 2} B_{1}\right)^{2 n}\right] \\
& t^{n^{\prime}} E\left[B_{1}^{2 n}\right]=(2 n-1) E\left[B_{1}^{2 n-2}\right] t^{n /} \\
& E {\left[B_{1}^{2 n}\right]=(2 n-1) E\left[B_{1}^{2 n-2}\right] }
\end{aligned}
$$

c) induction

$$
E\left[Z^{0}\right]=\frac{0!}{2^{0} 0!}=1
$$

previous result.

$$
\begin{aligned}
& E\left[z^{2 n}\right]=(2 n-1) E\left[z^{2 n-2}\right] \\
& \text { for } \begin{aligned}
n-1 & =(2 n-1) \frac{2(n-1)!}{2^{n-1}(n-1)!} \\
& =\frac{2 n(2 n-1)(2 n-2)!}{22^{n-1} n(n-1)!} \\
& =\frac{2 n!}{2^{n} n!}
\end{aligned} .
\end{aligned}
$$

$$
\text { suppose th's true for } n-1=(2 n-1) \frac{2(n-1)!}{2^{n-1}(n-1)!}
$$

Exerare 4

$$
\begin{aligned}
& X_{t}=\left(B_{t}+t\right) e^{-B_{t}-t / 2}=f\left(t, B_{t}\right) \\
& f(t, x)=(x+t) e^{-x-t / 2} \\
& \int_{0}^{t} d f\left(t, x_{B_{t}}\right)=\int_{0}^{t}\left(f_{1}+\frac{1}{2} f_{22}\right) d t+\int_{0}^{t} f_{2} d B_{t} \\
& f\left(0, B_{0}\right)=0 \quad f_{1}=e^{-x-t / 2}-\frac{1}{2}(x+t) e^{-x-t / 2} \\
& f_{2}=e^{-x-t / 2}-(x+t) e^{-x-t / 2} \\
& f_{22}=(x+t) e^{-x-t / 2}-2 e^{-x-t / 2} \\
& X_{t}=0 \quad \int_{0}^{t} 0 d t+\underbrace{\int_{0}^{t} e^{-13 t-t / 2}}_{0}\left(1-\left(B_{t}+t\right)\right) d B_{t}
\end{aligned}
$$

who is martingale.

1
'Exercise 5

$$
\begin{aligned}
X_{t}= & B_{t}^{4}-6 t B_{t}^{2}+3 t^{2} \\
f(t, 2)= & x^{4}-6 t x^{2}+3 t^{2} \\
f_{1}= & -6 x^{2}+6 t \\
f_{2}= & 4 x^{3}-12 t x \\
f_{22}= & 12 x^{2}-12 t \\
X_{t}-X_{0}= & \int_{0}^{t}-6 B_{t}^{2}+6 t+\frac{1}{2}\left(12 B_{t}^{2}-12 t\right) d t \\
& +\int_{0}^{t} 4 B_{t}^{3}-12 t B_{t} 4 B_{t} \\
= & \int_{0}^{t} c d t+\underbrace{\int_{0}^{t}\left(4 B_{t}^{3}-12 t B_{\tau}\right) d B_{t}}_{0}
\end{aligned}
$$

Exercise 6

$$
\begin{aligned}
X_{t}= & \int_{0}^{t} b_{s} d s+B_{t} \\
X_{t}^{2}= & \left(\int_{0}^{t} b_{s} d s\right)^{2}+B_{\tau}^{2}+\left.2 B_{t}\right|_{0} ^{t} b_{s} d s \quad\left|b_{t}\right| \leq k \\
& \left|\int_{0}^{\tau} b_{s} d_{s}\right| \leq \int_{0}^{\tau}\left|b_{s}\right| d s \leq k t \\
& \left|\int_{0}^{t} b_{s} d s\right|^{2} \leq k^{2} t^{2}
\end{aligned}
$$

So,

$$
\begin{aligned}
& E\left|\int_{0}^{r} b_{s} d s\right|^{2} \leqslant k^{2} t^{2} \\
& \left.E \mid R_{\tau}^{2}\right]=t . \\
& E\left[B_{t} \int_{0}^{t} b_{s} d_{s}\right]=\int_{-\infty}^{\infty} B_{\tau} \cdot \int_{0}^{t} b_{s} d_{s} d \mathbb{P}=\left\langle B_{\tau}, \int b_{s} d_{s}\right. \\
& c s \leq\left(E B_{c}^{2}\right)^{1 / 2}\left(E\left(\int_{0}^{c} b_{s} d s^{2}\right)^{2 / 2}\right. \\
& =t^{1 / 2}\left(k^{2} t^{2}\right)^{1 / 2} \\
& E\left[X_{t}^{2}\right]=K^{2} t^{2}+\left[+t^{1 / 2} k \tau\right. \\
& \sup _{t} E\left[X_{t}^{2}\right]=K^{2} T^{2}+T+T^{3 / 2} K \text {. }
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
X_{\tau} & =\int_{0}^{t} b_{s} d s+B_{t} \quad f(\tau, x)=e^{\lambda t} x^{2} \\
f_{1} & =\lambda f \quad f_{2}=2 e^{\lambda t} x \quad f_{22}=2 e^{\lambda t} \\
e^{\lambda \tau} X_{t}^{2}-e^{\lambda 0} X_{0}^{2} & =f_{1} d \tau+f_{2} d X_{\tau}+\frac{1}{2}\left[\cdots f_{22} d X_{t}^{2}-\right.
\end{aligned}
$$

$$
\begin{aligned}
\Delta d X_{\tau}=b d t & +d B_{\tau} \quad z d X_{t}^{2}=b d t^{2}+d B_{t}^{2}+2 b d t d B_{t} \\
e^{\lambda t} X_{t}^{2}-e^{\lambda 0} X_{0}^{2}= & \lambda e^{\lambda \tau} X_{t}^{2} d t+2 e^{\lambda t} X_{t}\left[b d \tau+d B_{t}\right] \\
& +\frac{1}{2}\left[\cdots+2 e^{\lambda t}\left[b d t^{2}+d B_{t}^{2}+2 b d \tau d B_{t}\right]\right.
\end{aligned}
$$

