CHAPTER 2

Identifiability of Compartmental Models

In this chapter, we attack the inverse problem: Given a solution, what are the properties of the flow rates?
The discussion held in this chapter is mainly based in [5] where the reader can find some additional theoretical
results if needed. In our model the input f to a compartmental system can be to a single compartment or in
certain circumstances, be mixed before it is distributed to input compartments. In general, we assume that
the input to the system is of the form

(2.0.17) f = Bu(t)

where B has as many rows as there are compartments. In general a donor controlled system is written as

d

(2.0.18) T~ Ax + Bu(t)
dt

with initial conditions

(2.0.19) x(0) = X

For example, in a two-compartment system, the matrix B = [1 1]7 would be used to indicate that the input
is shared equally by compartments] and 2, and the matrix B = [1 0]7 means that the input is applied only
the compartment denote as 1. Since our system is assumed donor controlled, the output will have the form

(2.0.20) y=Cux

in which the output of the compartments is directed to one or more measuring devices with measurements
y(t). These outputs are observations rather than flows out of the system. A Bolus input can be modeled
either as an initial value x(0) or incorporated into Bu(t) as an input delta ¢ centered at ¢ = 0, and the
Perfusion is modeled as a constant in time input u(t) = u. However, the flow rates in the matrix A are
unknown and must be determined from a knowledge of the input u(¢) and the measure y(t). The problem of
determining such an A is known as the identification problem.

DEFINITION 2.1. Identifiable System

A system

(2.0.21) flit” = Ax + f(t)

is identifiable if from a knowledge of the input f(¢) and the measure y(t) there is a unique solution to the
flow rates in the matrix A .

However, this problem does not always have a single solution and even when it does, it may be difficult to
find. The problem of actually estimating the parameters of an identifiable problem is an ill-posed problem;
that is, the output may be close to the true output, whereas the parameters are still quite different than the
true parameters; that is, such parameters are usually sensitive to slight perturbations of the data.
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FIGURE 2.1.1. One compartment Bolus case
2.1. Examples of a Identifiable System

2.1.1. One dimensional case. Lets consider the system associated by the Figure 2.1.1. This configu-
ration implies that our model is

dx

(2.1.1) o

= —a10x

and a dose D can be introduced as an initial condition (the bolus) as

(2.1.2) 2(0) =D

its solution is given by

(2.1.3) x(t) = Dexp (—aiot)

and measuring (in the only existing compartment) means C' = 1, then

(2.1.4) y (t) = Dexp (—ajot)

and it is clear that knowing y (¢)for a given ¢ = ¢;

(2.1.5) iy = —%m (ygl))

we find the only parameter we have in our model (a;0) in a unique way, making the system identifiable.

2.1.2. Two dimensional Bolus (no outfluxes). Lets consider a two compartmental model where
there are not physical outfluxes from the system as shown in Figure 2.1.2. The corresponding matrix repre-
sentation to this system is

(2.1.6)

b
Il
PR

—a12 Az
ai2 —a21
so the system is written as

d
(2.1.7) 1=~ + az172
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FIGURE 2.1.2. Two compartments (no outputs)

d
(2.1.8) pte = G271 — a21%y

where the input, and the measure are in the compartment 1 as

1
(2.1.9) B:(0>,C=(1 0)
Now we ask ourselves if a12 and a9, are identifiable. Lets define the input as

(2.1.10) w(t)=46(t—e)

a known Bolus input immediately e after the system is started then the solution (Appendix.- Analytic
Solution) is given by

¢
(2.1.11) x (t) =exp (At) 2 (0) + /eXpA (t —s) Bu(s)ds
0
that reduces to

(2.1.12) 2 (t) =exp(A(t —€) B

and the measure y(t) is written as

(2.1.13) y(t) = Cexp(A(t—e)B

taking limy (t) we get
e—0

(2.1.14) y(t) = Cexp (At) B

which is our general solution. As discussed in Appendix.- The Exponential of a Matrix, the computation of
exp (At) can be done as
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(2.1.15) y@)OK<‘mpyﬁ)(xp&ﬂ))K’U3

where the eigenvalues are given by

(2.1.16) det (A—X1) =0

and 1 denotes the Identity matrix so (2.1.16) leads to

(2.1.17) (—a12 — /\) (—CL21 — )\) — a12a21 = 0

obtaining the equation

(2.1.18) )\()\+a12+a21) =0

which implies that the eigenvalues are

)\1:0

2.1.19
( ) A2 = —(a12 + a21)

and the eigenvectors define the matrix K as

a1 1 1 -1 -1
2.1.20 K= K =
( ) < ajp —1 >’ detK < —a12 a2

and its determinant is

(2.1.21) detK = — (a12 + a21)

multiplying (2.1.15) by K~ we get

1 —exp (A1t) —exp (A\it)
2.1.22 t) = CK b
( ) 1 (1) det (K) ( —aizexp (Aat) @21 exp (Aat)
and by K
1 —az1 exp (A1t) — a1z exp (Aat)  —az1 exp (A1t) + az1 exp (Aat) >
2.1.23 t)=——7=C 7
( ) Y1 ( ) det (K) < —a12 €Xp (Alt) + ai2 €xXp ()\Qt) —a12 €xXp ()\lt) — 421 €Xp ()\2t)

using that the input and measure (2.1.9) are in the compartment1 gives

1 ( —a21 €Xp (/\1t) — a12 €Xp (/\Qt) )

2.1.24 = det ()
( ) 1 (1) det (K) ¢ —ajz exp (A1t) + a1z exp (Agt)

and then
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—ag; exp (AM1t) — a2 exp (Nat)

(2.1.25) yr (t) = Tet ()

Now substituting that one eigenvalue \; is zero we obtain that

—a21 — a1 €xp (Aaot)

2.1.26 =
( ) o — (a12 + a21)
or
(2.1.27) v () = a1 + aiz exp (Aat)

a1z + a1

So, for identification we need a unique solution for a;5 and aq;.Taking t — co we get

. ai2
2.1.28 limy(t) = ————
( ) Jmy () = =
we can find —12— which together with
d A2az1 exp (Aat)
2.1.29 —y1 (t) = ———88=
( ) at” ®) a2 + az
using (2.1.29) at ¢t = 0 simplifies to
(2.1.30) d (0)
1. il - _a
dt Y1 21

so the system is identifiable. It is interesting to point out that as consequence of not having any output one
eigenvalue is zero, and the concentration level will always increase making the fooo y1 (t) dt to diverge.

2.2. An Example of a Non- Identifiable System

2.2.1. Two dimensional Bolus (measure in 2). Lets consider now the two compartmental model
with elimination in compartment 1 represented in Figure 1.2.1 and with matrix representation given by
(2.1.6). But this time the measure it is taken only in the 2nd compartment. This meas that

(2.2.1) C=(0 1)

and the solution has the starting level in 2

(2.2.2) y2 (0) =0

the integral equation

oo

(2.2.3) / yo () dt = / (Cexp (At) B) dt

0

provides
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FIGURE 2.2.1. Two compartments (2 outputs)

2.2.4 Cexp (At) B |®= —CA~'B= 2 _
( ) exp( ) |O (a21a10)

from where we can not identify any parameter directly. But making use of the derivatives of y(t) we find
that

d
2.2.5 = —y(0
(2:25) a1z = Zy(0)
obtaining a12, and from the second derivative
d 2
(2.2.6) a1z (—ai2 — ai) — az1a12 = p7e) y(0)

getting 2 equations, but further differentiation doesn’t provide more information about the system . Now,
. 2 . .
deﬁnlng the constants o : = Tig# y(()) + a9, and ﬂ = % we have that the system is written as

(2.2.7) (a10 + a21) =«
and
(2.2.8) aziaip =

from where we can see that there are two solutions ( interchanging the values of ag; and ajp).

2.2.2. Two dimensional Bolus with 2 out fluxes. We now consider the same example and hypoth-
esize that both compartments have fluxes to the outside. The system of equations has matrices

(2.2.9) A= ( —iz T a0 a2 >

a2 —a21 — G20
where the input comes only in the compartment1, the measured output it is taken only in the same compart-
ment (number 1). And we have 4 parameters to estimate.

The solution still is (2.1.18) so that

(2.2.10) y(0)=1
and its derivatives
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d™y

2.2.11 —=
( ) s

(t) = CA"exp (At) B

provide more equations for the system as

(2.2.12) Y 0y = canp
dtm
from where we obtain 2 equations as
d
(2.2.13) d—‘z (0) = — (a12 + a1o0)
and
d2
(2.2.14) J (0) = (a12 + a10)” + az1a12

dr?

but successive differentiation after the 2nd derivative don’t provide new equations. This two equations
together with the equation that comes from the integration

o0 oo
(2.2.15) /y (t)dt = /Cexp (At) Bdt
0 0
gives
(2.2.16) =CA'exp(At) B |°=-CA™'B
and the inverse is given by
L _ azo+asz _ as
(2217) A = < _ a10a20+01£1a221+a121120 _aloazo-z(goag%;-alzazo >
aioaz20taioa21+aizazo aipazotaioaz1+ai2a20
SO
[
(2.2.18) /y (t) dt = G20 F 021
" a10a20 + 10021 + A12a20

and the system is not identifiable. Including another measure (in compartment 2) as

(2.2.19) C= ( - >

makes the system identifiable. This can also be shown with the Laplace transform approach.
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2.2.3. Using Laplace Transform. The Laplace transform is defined as

(2.2.20) L(f(t)= /exp(—st) ft)dt
0
so that
d
(2.2.21) L %f (t) | =sF(s)— f(0)
then we get
(oo}
2. s) = exp (At) exp (—slt) dt
2.2.22 Y C A 1t)dt | B
0

which becomes

(2.2.23) Y(s)=C(s1—A)'B

Now,

s+ a2+ ao —a21

2.2.24 1-A=

( ) s ( —a12 S+ ag1 + ago >
its determinant is

(2.2.25) det (81 — A) = (S + a2 + alo) (S + a21 + ago) — (12021
(2.2.26) = 5% + s (a12 + @10 + a1 + aso) + a10a21 + 12020 + a10a20
so the Laplace Transform
_ 1 S+ ag1 + a2 a21 1

2.2.27 C(s1—A) 'B=—————(1 0

( ) (s ) det (s1 — A) ( ) ( a2 s+ a12 + a 0
leads to

(2.2.28) C(sl— A)tp= 021+ 02

~ det (s1 — A)

using (2.2.22) we get

S$+ a1 + ago

(2.2.29) Y (5) = —
52 + s (a12 + a10 + a21 + az) + (a10a21 + a12a20 + a10a20)

so we get
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Q= a1 + ago
(2.2.30) B = ai2 + aio + a1 + ao
Y = @10a21 + G12a20 + G10a20

there is no unique solution and the system is not identifiable. But, if we include a second measure (in
compartment 2) C' will be the 222 identity matrix and we obtain

_ 1 S+ az1 + azo
(2.2.31) Y(s5)= T ( .

and

(2.2.32) ( Y1 (s) ) - ( S+a2112+ e )

Yz (s) a12 + a1o + a21 + ago) + (@10a21 + a12a20 + a10020)

Thus, from the numerator of Y;(s), we can find as; + asg, and from that of Y5(s), we can find aj5. The
denominator gives us two additional equations which can be used to find a;g and a9y thereby making our
new system identifiable.

2.2.4. The General Case. In a general model with n compartments, the associated compartmental
matrix A is nxn. If the model has p inputs and ¢ outputs, then B will be a nxp matrix and C a gxn
matrix. The observed measurements y(t) constitute a ¢xp matrix, again given by,

(2.2.33) y(t) = Cexp (At) B

with Laplace transform

(2.2.34) Y (s)=C(sl—A) "B

The inverse may be shown, by expanding in minors, to be of the form

(2.2.35) (51— 4) 1 = 21

where P(s) is the characteristic polynomial of A and Q(s) is a polynomial of degree at most (n — 1) with
qx p matrix coefficients. Thus

(2.2.36) Y (s) = Gg((z))B

and the numerator has ¢ x p matrix coefficients. If Y(s) is known, then it gives us n equations in the coefficients
in A from the denominator alone. The numerator gives us n—1 equations for each element in the ¢ x p matrix.
The total number of equations is therefore n 4+ pg(n — 1). The total number of unknown flows may be as
large as n? if each compartment has flows to every other and to the outside. This gives the negative result.

PROPOSITION 2.2. If the total number of nonzero flows in the compartmental model exceeds n + pq(n - 1),
then the system is not identifiable: In particular, if the structure is not specified, the system is not identifiable
if n > pq.
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The last inequality holds if n? > n + pg(n — 1). Sufficient conditions are usually quite technical since even if
the number of equations is greater than or equal to the number of flows, there may be redundancy among the
equations. This happens in the case of a cycle which has exactly n — 1 flows (provided it has no excretions)
but leads to 2n — 2 equations. For necessary and sufficient conditions, see, for example [7,8,9,10,11]
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