Lecture 3 : Martingales: definition, examples

MATH275B - Winter 2012
Lecturer: Sebastien Roch

References: [Wil91, Chapter 10], [Dur10, Section 5.2], [KT75, Section 6.1].

1 Definitions

DEF 3.1 A filtered space is a tuple $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ where:

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- $\left\{\mathcal{F}_{n}\right\}$ is a filtration, i.e.,

$$
\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{\infty} \equiv \sigma\left(\cup \mathcal{F}_{n}\right) \subseteq \mathcal{F}
$$

where each \mathcal{F}_{i} is a σ-field.
Intuitively, \mathcal{F}_{i} is the information up to time i.
EX 3.2 Let X_{0}, X_{1}, \ldots be iid $R V$ s. Then a filtration is given by

$$
\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right), \forall n \geq 0 .
$$

Fix $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$.
DEF 3.3 A process $\left\{W_{n}\right\}_{n \geq 0}$ is adapted if $W_{n} \in \mathcal{F}_{n}$ for all n.
Intuitively, the value of W_{n} is known at time n.
EX 3.4 Continuing. Let $\left\{S_{n}\right\}_{n \geq 0}$ where $S_{n}=\sum_{i \leq n} X_{i}$ is adapted.
DEF 3.5 A process $\left\{C_{n}\right\}_{n \geq 1}$ is previsible if $C_{n} \in \mathcal{F}_{n-1}$ for all $n \geq 1$.
EX 3.6 Continuing. $C_{n}=\mathbb{1}\left\{S_{n-1} \leq k\right\}$.
Our main definition is the following.
DEF 3.7 A process $\left\{M_{n}\right\}_{n \geq 0}$ is a martingale (MG) if

- $\left\{M_{n}\right\}$ is adapted
- $\mathbb{E}\left|M_{n}\right|<+\infty$ for all n
- $\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1}$ for all $n \geq 1$

A superMG or subMG is similar except that the equality in the last property is replaced with \leq or \geq respectively.

2 Examples

EX 3.8 (Sums of iid RVs with mean 0) Let

- X_{0}, X_{1}, \ldots iid RVs integrable and centered with $X_{0}=0$
- $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)$
- $S_{n}=\sum_{i \leq n} X_{i}$

Then note that $\mathbb{E}\left|S_{n}\right|<\infty$ by the triangle inequality and

$$
\begin{aligned}
\mathbb{E}\left[S_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}\left[S_{n-1}+X_{n} \mid \mathcal{F}_{n-1}\right] \\
& =S_{n-1}+\mathbb{E}\left[X_{n}\right]=S_{n-1} .
\end{aligned}
$$

EX 3.9 (Variance of a sum) Same setup with $\sigma^{2} \equiv \operatorname{Var}\left[X_{1}\right]<\infty$. Define

$$
M_{n}=S_{n}^{2}-n \sigma^{2} .
$$

Note that

$$
\mathbb{E}\left|M_{n}\right| \leq \sum_{i \leq n} \operatorname{Var}\left[X_{i}\right]+n \sigma^{2} \leq 2 n \sigma^{2}<+\infty
$$

and

$$
\begin{aligned}
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}\left[\left(X_{n}+S_{n-1}\right)^{2}-n \sigma^{2} \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}\left[X_{n}^{2}+2 X_{n} S_{n-1}+S_{n-1}^{2}-n \sigma^{2} \mid \mathcal{F}_{n-1}\right] \\
& =\sigma^{2}+0+S_{n-1}^{2}-n \sigma^{2}=M_{n-1} .
\end{aligned}
$$

EX 3.10 (Exponential moment of a sum; Wald's MG) Same setup with $\phi(\lambda)=$ $\mathbb{E}\left[\exp \left(\lambda X_{1}\right)\right]<+\infty$ for some $\lambda \neq 0$. Define

$$
M_{n}=\phi(\lambda)^{-n} \exp \left(\lambda S_{n}\right) .
$$

Note that

$$
\mathbb{E}\left|M_{n}\right| \leq \frac{\phi(\lambda)^{n}}{\phi(\lambda)^{n}}=1<+\infty
$$

and

$$
\begin{aligned}
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right] & =\phi(\lambda)^{-n} \mathbb{E}\left[\exp \left(\lambda\left(X_{n}+S_{n-1}\right)\right) \mid \mathcal{F}_{n-1}\right] \\
& =\phi(\lambda)^{-n} \exp \left(\lambda S_{n-1}\right) \phi(\lambda)=M_{n-1} .
\end{aligned}
$$

EX 3.11 (Product of iid RVs with mean 1) Same setup with $X_{0}=1, X_{i} \geq 0$ and $\mathbb{E}\left[X_{1}\right]=1$. Define

$$
0 \quad M_{n}=\prod_{i \leq n} X_{i} \text {. }
$$

Note that

$$
\mathbb{E}\left|M_{n}\right|=1
$$

and

$$
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1} \mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1} .
$$

EX 3.12 (Accumulating data; Doob's MG) Let $X \in \mathcal{L}^{1}(\mathcal{F})$. Define

$$
M_{n}=\mathbb{E}\left[X \mid \mathcal{F}_{n}\right] .
$$

Note that

$$
\mathbb{E}\left|M_{n}\right| \leq \mathbb{E}|X|<+\infty,
$$

and

$$
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=\mathbb{E}\left[X \mid \mathcal{F}_{n-1}\right]=M_{n-1},
$$

by (TOWER).
EX 3.13 (Eigenvalues of transition matrix) Recall that a MC on a countable E is:

- $\left\{\mu_{i}\right\}_{i \in E},\{p(i, j)\}_{i, j \in E}$
- $Y(i, n) \sim p(i, \cdot)$ (indep.)
- $Z_{0} \sim \mu$ and $Z_{n}=Y\left(Z_{n-1}, n\right)$.

Suppose $f: E \rightarrow \mathbb{R}$ is s.t.

$$
\sum_{j} p(i, j) f(j)=\lambda f(i), \forall i,
$$

with $\mathbb{E}\left|f\left(Z_{n}\right)\right|<+\infty$ for all n. Define

$$
M_{n}=\lambda^{-n} f\left(Z_{n}\right)
$$

Note that

$$
\mathbb{E}\left|M_{n}\right|<+\infty,
$$

and

$$
\begin{aligned}
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right] & =\lambda^{-n} \mathbb{E}\left[f\left(Z_{n}\right) \mid \mathcal{F}_{n-1}\right] \\
& =\lambda^{-n} \sum_{j} p\left(Z_{n-1}, j\right) f(j) \\
& =\lambda^{-n} \cdot \lambda \cdot f\left(Z_{n-1}\right)=M_{n-1} .
\end{aligned}
$$

EX 3.14 (Branching Process) Recall that a branching process is:

- $X(i, n), i \geq 1$ and $n \geq 1$, iid with mean m
- $Z_{0}=1$ and $Z_{n}=\sum_{i \leq Z_{n-1}} X(i, n)$

Note that for $f(j)=j$ we have

$$
\sum_{j} p(i, j) j=m i
$$

so that $M_{n}=m^{-n} Z_{n}$ is a $M G$.

Further reading

Comments on harmonic functions in [Dur10, Seciton 5.2].

Next class

Stopping times and betting systems [Dur10, Section 5.2].

References

[Dur10] Rick Durrett. Probability: theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
[KT75] Samuel Karlin and Howard M. Taylor. A first course in stochastic processes. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
[Wi191] David Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

