
Assignment 3

Machine Learning, Summer term 2014, Ulrike von Luxburg

To be discussed in exercise groups on May 5-7

Exercise 1 (Linear mapping, 1+1+1+1 points) Load the data from Adot.mat. Each column
of matrix X represents one data point.

(a) Use the following code to calculate a linear mapping V . Apply the linear mapping on X to get
Y = V X. Plot both X and Y in the same figure. What does the linear mapping V do?

theta = pi/3;

V = [cos(theta) -sin(theta);sin(theta) cos(theta)];

(b) Now apply the transpose of the linear mapping on Y to get Z = V tY . Plot Z and describe
what does the linear mapping V tV do.

(c) What does the linear mappings D1=[2 0;0 2] and D2=[2 0;0 1] do? Apply them on X and
plot the results.

(d) What does the linear mapping A = V t ∗D2 ∗ V do? Apply it on X and plot the result.

Exercise 2 (Inverse of a matrix, 1 point) Assume that V is a n × n matrix such that
V V t = V tV = I, where I is the identity matrix. Moreover, D is a diagonal matrix

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 (1)

where di > 0. Prove that the inverse of the matrix A = V DV t is A−1 = V D−1V t. Here, D−1 is
a diagonal matrix with diagonal entries 1/di. To prove that B = A−1, it is enough to show that
AB = BA = I.

Exercise 3 (Convexity, 2 points) Prove that the least squares loss function ‖Y −Xw‖2 is a
convex function of w.

Exercise 4 (Linear regression with weights, 4 point) Consider a data set in which each
data point Xi is associated with a weighting factor ri > 0, so that the empirical least squares error
becomes

E =
1

n

n∑
i=1

ri(Yi − 〈w,Xi〉)2.

Find an expression for the solution w that minimizes this error function.

Exercise 5 (Ridge regression, 2+2+4 points) In this exercise, you will implement the ridge
regression algorithm. Load the synthetic train and test data from dataRidge.mat.

(a) Run the linear least square and plot the training points, the predicted line and the predicted
values for the test data.

(b) Linear least square with polynomial basis functions

Web page: http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
teaching/2014-ss-vorlesung-ml/

Login: “machine”, Password: “learning”

• Run the linear least square with polynomial basis functions

Φi(x) = xi; i = 1, ..., 15. (2)

Illustrate the learned regression function by applying it on xx=-1.5:0.01:2.5.

• Describe the class of functions that you can learn with these basis functions.

(c) Ridge regression

• Write a function RidgeLLS(X,Y,lambda) which implements the ridge regression. Here, X
is the design matrix.

• Apply the ridge regression on the test data using the set of basis functions in Equation
2. Plot the prediction function (on the previous figure) for regularization constant λ ∈
{0.0001, 0.1, 10}.

• Report the prediction error with respect to λ for λ ∈ {2i; i = −15,−14, ..., 1}.

Exercise 6 (Prediction complexity of linear least square and kNN, 1 point) Compare
the prediction running time for linear least square method and kNN regression (computational
complexity). How much information do you need to keep for predicting with each method (space
complexity)?

2

MACHINE LEARNING- ASSIGNMENT 3

VICTOR BERNAL ARZOLA

Exercise 2

Given that V V T = V TV = 1 and D = diag (di) an invertible matrix.

Proposition. Show that for A = V DV T then A−1 = V D−1V T

Proof. it is straighforward to check that

AB = V DV TV D−1V T = V D
(
V TV

)
D−1V T = V

(
DD−1

)
V T = V V T = 1

and

BA = V D−1V TV DV T = V D−1
(
V TV

)
DV T = V

(
D−1D

)
V T = V V T = 1

then �

⇒ A−1 = B

Exercise 3

Proposition. Prove that the least squares loss function is a convex function of w.

A way to prove that a function is convex is by showing that the second order derivative (if it exists) is positive
semi-de�nite.

Proof. Recall that if the matrix zTX 6= 0 ∀z 6= 0 then the matrix M = XXT satisfy that �

zTMz = zTXXT z =
∥∥zTX∥∥2

2
> 0

then XXT is a positive de�nite matrix.

Exercise 4

Consider a data set in which each data pointXi is associated with a weighting factor ri

Proposition. Prove that the weighted least squares loss function is a convex function of w.

Proof. Let W = diag(ri) where ri > 0 Therefore, WT = W
optimize the weighted loss function �

1

n

n∑
i=1

ri (yi − 〈Xi, w〉)2

is equivalent to optimize (see[3])

= (y −Xw)
T
W (y −Xw)

=
(
yTW − wTXTW

)
(y −Xw)

(0.1) = yTWy − wTXTWy − yTWXw + wTXTWXw

using di�erentiation we have

∂

∂w

(
yTWy − wTXTWy − yTWXw + wTXTWXw

)
1

MACHINE LEARNING- ASSIGNMENT 3 2

Output Complexity Operation

XTX O(md2) Matrix Multiplication
XT y O(md) Matrix Multiplication(

XTX
)−1

O(d3) Inverse (Gauss Jordan)

w =
(
XTX

)−1
XT y O(d2) Matrix Multiplication

Table 1. Time Complexity Least Squares Operations

Here X is a mxd matrix, y a mx1 matrix.

= −XTWy − yTWX + 2wTXTWX

= −2XTWy + 2XTWXw

is equal to zero, leading to

(0.2) w =
(
XTWX

)−1
XTWy

The Hessian given by di�erentiating again 0.1

(0.3)
∂

∂wT

(
−XTWy − yTWX + 2wTXTWX

)
= 2XTWX

is positive semi-de�nite matrix.

Exercise 5

Complexity of a algorithm. How long does this sorting program run? The number of (machine) instruc-
tions which a program executes during its running time is called its time complexity in computer science.
The better the time complexity of an algorithm is, the faster the algorithm will carry out his work in practice.
For the time computational complexity we must add up how many machine instructions it will execute (as
a function of the size of its input) and then simplify the expression to the largest term and can include any
simplifying constant factor.
Apart from time complexity, its space complexity is also important: This is essentially the number of memory
cells which an algorithm needs. A good algorithm keeps this number as small as possible, too.Time and Space
complexity are di�erent aspects of calculating the e�ciency of an algorithm. Time complexity deals with
�nding out how the computational time of an algorithm changes with the change in size of the input. On
the other hand space complexity deals with �nding out how much (extra)space would be required by the
algorithm with change in the input size. To calculate time complexity of the algorithm the best way is to check
if we increase in the size of the input, will the number of comparison(or computational steps) also increase
and to calculate space complexity the best bet is to see additional memory requirement of the algorithm also
changes with the change in the size of the input.[2]
There is often a time-space-trade o� involved in a problem, that is, it cannot be solved with few computing
time and low memory consumption. One then has to make a compromise and to exchange computing time
for memory consumption or vice versa, depending on which algorithm one chooses and how one parameterizes
it. Generally, the notation f(n) = O(g(n)) says that the function f is asymptotically bounded from above
by the function g. Lets suppose X has m data points in d dimensions.
So we have O(md2 + d3 +md+ d2). Now, we shall assume that m� d (more data points than dimensions).
In this case, O(md2) dominates over O(d3), O(md) and O(d2). Thus the asymptotically time computational
complexity of LLS is O(md2).
Thus the asymptotically space computational complexity of LLS is O(md)
Now, we shall assume that k � m and m � d (more data points than dimensions). In this case, O(md)
dominates the rest. Thus the asymptotically time computational complexity of KNN is O(md).
Thus the asymptotically space computational complexity of KNN is O(md)

MACHINE LEARNING- ASSIGNMENT 3 3

Object Space

X md
XT dm
y m

XTX d2

XT y d(
XTX

)−1
d2

w d
Table 2. Space Complexity Least Squares Operations

Here X is a mxd matrix, y a mx1 matrix.

Output Complexity Operation

Xtest −Xtrain,i O(md) m subtraction for d dimensions

(Xtest −Xtrain,i)
2

O(m) m squares
n∑

i=1

(Xtest −Xtrain,i)
2

O(m) m sums√
n∑

i=1

(Xtest −Xtrain,i)
2

O(m) square roots for m points

sort O(m lnm)[1] sort m points
majority of k nearest O(k) Mode

Table 3. Time Complexity KNN

Here X is a mxd matrix, y a mx1 matrix.

Object Space

X md
y m

distance m
sort m
k k

Table 4. Space Complexity Least Squares Operations

Here X is a mxd matrix, y a mx1 matrix.

Remarks

• The Hessian matrix Hij = ∂f
∂xi∂xj

of a convex function f (x) is positive semi-de�nite(i.e zTHz ≥ 0

∀z 6= 0). Re�ning this property allows us to test if a critical point x is a local maximum or a local
minimum, as follows.

• If the Hessian H is positive de�nite at x, then f (x) attains a local minimum at x. If the Hessian
is negative de�nite at x, then f (x) attains a local maximum at x. If the Hessian has both positive
and negative eigenvalues then x is a saddle point for f (x) . Otherwise the test is inconclusive. This
implies that, at a local minimum (resp. a local maximum), the Hessian is positive-semi-de�nite (resp.
negative semi-de�nite).

• In one variable, the Hessian contains just one second derivative; if it is positive then x is a local
minimum, and if it is negative then x is a local maximum; if it is zero then the test is inconclusive. In
two variables, the determinant can be used, because the determinant is the product of the eigenvalues.
If it is positive then the eigenvalues are both positive, or both negative. If it is negative then the two
eigenvalues have di�erent signs. If it is zero, then the second derivative test is inconclusive

References

[1] https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms
[2] https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
[3] https://en.wikipedia.org/wiki/Matrix_calculus

https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Matrix_calculus

	blatt03

