
Assignment 4

Machine Learning, Summer term 2014, Ulrike von Luxburg

To be discussed in exercise groups on May 12-14

Exercise 1 (Rewriting the Fisher criterion for LDA, 2 points) Show that the Fisher
criterion

J(w) =
〈w,m+ −m−〉2

σ2
w,+ + σ2

w,−

can be rewritten as

J(w) =
〈w,CBw〉
〈w,CWw〉

.

See the lecture notes for the meaning of m+, m−, σ2
w,+, σ2

w,−, CB and CW .

Read prepare04.pdf (available on the course webpage) for an example of how to perform linear
discriminant analysis (LDA) in MATLAB.

Exercise 2 (Digit classification with LDA, 1+2 points) We want to use LDA for written
digit classification on the USPS dataset from Assignment 1 (do not forget to convert the data type
from uint8 to double).

(a) Use ClassificationDiscriminant.fit to train a LDA classifier for digit 2 versus 9. Use
imagesc (see Assignment 1) to plot the learned weights in a 16x16 image. Here you do not
need to change the colormap.

(b) Use your learned weights(.Linear) and the constant weight(.Const) to predict labels of the
test data for digits 2 and 9. Report the 0-1 loss of your prediction and compare it with the
performance of the kNN classifier for k = 5.

Multiclass classification: So far, all classification algorithms we have seen were designed to
deal with two class (binary) classification problems. In many real world applications (e.g. digit
recognition), our data has several classes. A common approach to solve such problems is to build
a multiclass classifier from several binary classifiers. Assume we have k classes C1, ..., Ck. Usually
we follow one of the two strategies:

• One vs. All: A single classifier is trained per class to distinguish that class from all other
classes. Prediction is then performed by predicting using each binary classifier, and choosing
the prediction with the highest confidence score (in LDA, wix+ bi is the score for class i).

• One vs. One: For each pair of classes we construct a binary classifier (c(c − 1)/2 classifiers
in total). Usually, classification of an unknown pattern is done according to the maximum
voting, where each of c(c− 1)/2 classifiers votes for one class.

Exercise 3 (Multiclass classification with LDA, 2+3 points)

(a) Implement the One vs. All strategy for LDA classifier to classify digits 1, 2, 3 and 4 from USPS
dataset (use the complete dataset — available on the course webpage). Report the test error.

Web page: http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
teaching/2014-ss-vorlesung-ml/

Login: “machine”, Password: “learning”

(b) Implement the One vs. One strategy for LDA classifier to classify digits 1, 2, 3 and 4 from
USPS dataset (use the complete dataset — available on the course webpage). Report the test
error.

Exercise 4 (Complexity of multiclass classification, 2+1 points) You have a multiclass
classification problem with n training points and k classes. Assume that each class has the same
number of training points. A binary classifier myClassifier is given which requires c(m2

1 + m2
2)

operations to learn the classifier (where mi is the number of training points in class i and c is a
constant).

(a) Compare the training time of multiclass classification with One vs. All and One vs. One
strategies using myClassifier. Which strategy is faster?

(b) Does the situation change if myClassifier only requires c(m1 +m2) operations for training?

Cross validation (m-fold): In many machine learning algorithms we need to choose parameters
of our learning algorithm. The regularization parameter λ in ridge regression or the number of
neighbors k in kNN classification are examples of such parameters.
In m-fold cross-validation the original sample is randomly partitioned into m (roughly) equally
sized subsamples. Of the m subsamples, a single subsample is retained as the validation data
for testing the model, and the remaining m − 1 subsamples are used as training data. The cross-
validation process is then repeated m times (the folds), with each of the m subsamples used exactly
once as the validation data. The m results from the folds then can be combined to produce a single
estimation of the performance of the classifier under consideration.
Hence, we have the following scheme for choosing a parameter out of a finite set Λ of possible
parameter values:

1. Split the data into m equally sized groups.

2. FOR λ ∈ Λ, i = 1, . . . ,m DO

(a) Select group i to be the validation set and all other (m − 1) groups to be the training
set.

(b) Train the model with parameter λ on the training set, evaluate on the validation set
and store the test error.

3. Select the parameter which performed best in the m folds (usually, one considers the average
test error).

Exercise 5 (Parameter selection by the training error, 1 point) A naive approach for
choosing the learning parameter would be to select the one which minimizes the training error.
Explain why this is not a good idea in ridge regression and kNN classification.

Exercise 6 (Cross validation in ridge regression, 3 points) Use your ridge regression
code (or the one available on the course webpage) and the training data in dataRidge.mat from
Assignment 3. Choose the regularization parameter from λ ∈ {2−i|i = −15,−14, ..., 7, 8}. Use 10-
fold cross validation to select the regularization parameter with best performance (test error with
L2 loss). To partition the data the MATLAB command cvpartition might be helpful.

2

MACHINE LEARNING- ASSIGNMENT 4

VICTOR BERNAL ARZOLA

Exercise 1

The Fisher criterion is

(0.1) J (w) =
〈w,m+ −m−〉2

σ2
w,+ + σ2

w,−

if we manipulate the numerator

=
wT (m+ −m−) (m+ −m−)w

σ2
w,+ + σ2

w,−

using the de�nition of between-class covariance

=
wTCBw

σ2
w,+ + σ2

w,−
or

(0.2) =
〈w,CBw〉
σ2
w,+ + σ2

w,−

recalling the de�nition for the denominator of 0.1 we have

σ2
w,+ =

1

n+

∑
{i:Yi=+1}

(〈w,Xi〉 − 〈w,m+〉)2

or

σ2
w,+ =

1

n+

∑
{i:Yi=+1}

(
wT (Xi −m+)

)2
that can be written as

(0.3) σ2
w,+ =

1

n+

∑
{i:Yi=+1}

(
wT (Xi −m+) (Xi −m+)

T
w
)

using a similar procedure for the other class we get

σ2
w,+ + σ2

w,− = wT

 1

n+

∑
{i:Yi=+1}

(
(Xi −m+) (Xi −m+)

T
)
+

1

n−

∑
{i:Yi=−1}

(
(Xi −m−) (Xi −m−)T

)w
recalling the de�nition of within-class covariance

(0.4) σ2
w,+ + σ2

w,− =
〈
wT , CWw

〉
Finally 0.1 0.30.4 lead to

J (w) =
〈w,CBw〉
〈wT , CWw〉

Exercise 4

Complexity of multi-class classi�cation. You have a multi class classi�cation problem with N training
points and K classes. Assume that each class has the same number of training points.

1

MACHINE LEARNING- ASSIGNMENT 4 2

Output One vs one One vs All

Classi�ers K (K − 1) /2 K

Operations per classi�er c
((

N
K

)2
+
(
N
K

)2)
c
((

N
K

)2
+
(
N − N

K

)2)
Training Time K (K − 1) c

(
N
K

)2
Kc
((

N
K

)2
+
(
N − N

K

)2)
Table 1. Time Complexity Multi-class approaches (a)

For a classi�er that takes c
(
m2

1 +m2
2

)
operations to learn One vs All takes more time.

Output One vs one One vs All

Classi�ers K (K − 1) /2 K

Operations per classi�er c
((

N
K

)
+
(
N
K

))
c
((

N
K

)
+
(
N − N

K

))
Training Time K (K − 1) c

(
N
K

)
KcN

Table 2. Time Complexity Multi-class approaches (b)

For a classi�er that takes c (m1 +m2) operations to learn One vs All takes more time.

Exercise 5

A model has over �t the training data when its test error is larger than its training error (by at least some
small amount). This means you model will fail to generalize. This is why training set error is a poor predictor
of hypothesis accuracy for new data (generalization).

Remarks

The polynomial regression model can be expressed in matrix form in terms of a design matrix X, a response
vector Y , a parameter vector a, and a vector ε of random errors. Then the model can be written as a system
of linear equations:

Y = Xa+ ε Y1
:
Yn

 =

 1 x1... xp1
1 x2... xp2
1 xn... xpn

 a1
:
an


The ith row of X and Y will contain the x and y value for the ith data sample. The vector of estimated
polynomial regression coe�cients can be found with least squares. This is the unique least squares solution
as long as X has linearly independent columns.

1

Table of Contents
... 1
Part (a) ... 1
Part (b) Label Prediction LDA for test data ... 3
Compare LDA with a KNN classifier with K=5 ... 4
Cross validation (10-fold) for KNN ... 4
Exercise 6 Cross validation (10-fold) for KNN .. 5

% Machine Learning Exercise 2

% The USPS dataset contains grayscale handwritten digit images scanned from
% envelopes by the U.S. Postal Service.
% The images are of size 16 x 16 (256 pixel) with pixel values
% in the range 0 to 255. We have 10 classes f1; 2; :::; 9; 0g.
% The training data has 500 images, stored in a 500 x 256 Matlab matrix
%(usps_train.mat). The training label is a 500 x 1 vector
% revealing the labels for the training data.
% There are 200 test images for evaluating your algorithm
% in the test data (usps_test.mat).

Part (a)
clear all; clc; close all;
load usps_train
load usps_test

% trList Find labels of data corresponding to 2 and 9
trList = find(train_label==2 | train_label==9);
% Train data on this indexs
x_train = double(train_data(trList,:));
y_train = double(train_label(trList));

%Create a linear classifier
cls = ClassificationDiscriminant.fit(x_train,y_train);
% Uses LDA (Hyperplane K+Lx=Y)

%b
K = cls.Coeffs(1,2).Const;
%w 256x1
L = cls.Coeffs(1,2).Linear;

%weights = reshape(L,16,16);
%imagesc((weights));

% A nine?
figure(1)
weights = reshape(x_train(100,:),16,16);
imagesc((weights));

2

% A two?
figure(2)
weights = reshape(x_train(2,:),16,16);
imagesc((weights));

3

Part (b) Label Prediction LDA for test data
%There are 200 test images for evaluating
%your algorithm in the test data (usps_test.mat).

testList = find(test_label==2 | test_label==9);
x_test = double(test_data(testList,:)); % 40 x 256
y_test = double(test_label(testList));

% [1 x_test][K;L]=Y
x_test_modified = [ones(size(x_test,1),1) x_test];% add offset
coeff = [K ; L];

y_predicted = x_test_modified * coeff ;
class_2 = find(y_predicted >=0);
class_9 = find(y_predicted <0);
y_predicted(class_2) = 2;
y_predicted(class_9) = 9;

%=== Test the classifier error loss01===
err = loss01(y_predicted, y_test)

%[y_predicted, y_test]

4

err =

 0.0750

Compare LDA with a KNN classifier with K=5
knnClassify(train_data,train_label,test_data,k)

k_values=5;

% Knn prediction
predTest(:,1)=knnClassify(x_train,y_train,x_test,k_values);

%=== Test the classifier error loss01===

errTest(:,1)=loss01(predTest(:,1),y_test)

%==

errTest =

 0.0250

Cross validation (10-fold) for KNN
Select the parameter which performed best in the m folds (usually, one considers the average test error).
Set the seed

rng(123)

% Y train (the labels) has a length 100, and we will do partitions of 90/10

k=[1,3,5,7,10,20,30,50];
CVO = cvpartition(y_train,'k',10);
err = zeros(CVO.NumTestSets,1);

for j=1:length(k)
for i = 1:CVO.NumTestSets
 trIdx = find(CVO.training(i)); % 90 indexes respect to the train data
 teIdx = find(CVO.test(i));% 10 indexes respect to the train data
 % Cross validation we test against a portion of the same train data
 ytest = knnClassify(x_train(trIdx,:),y_train(trIdx,:),x_train(teIdx,:),k(j));

 err(i) = loss01(ytest,y_train(teIdx));
end
% Average error
cvErr(j) = sum(err)/sum(CVO.TestSize);
end

5

plot(k,100*cvErr,'*-')
xlabel('k')
ylabel('error')
grid on

Exercise 6 Cross validation (10-fold) for KNN
Select the parameter which performed best in the m folds (usually, one considers the average test error).
Set the seed

clc; clear all; close all;
load dataRidge.mat
rng(123)

% Buld the polynomial basis
% https://en.wikipedia.org/wiki/Polynomial_regression#Matrix_form_and_calculation_of_estimates
% y_data= x_poly * a' , where a is a vector of coefficients to be computed
for i=0:3
x_poly(:,i+1)= x_train.^i;
end

% Y train (the labels) has a length 100, and we will do partitions of 90/10
p=15; % polynomial basis degree
lambda=[-12,-10,-8,-6,-4,-2,0,2,4,6,8,10,12];
CVO = cvpartition(y_train,'k',10);
err = zeros(CVO.NumTestSets,1);

6

for j=1:length(lambda)
for i = 1:CVO.NumTestSets
 trIdx = find(CVO.training(i)); % 90 indexes respect to the train data
 teIdx = find(CVO.test(i));% 10 indexes respect to the train data
 % Cross validation we test against a portion of the same train data
 % named test
 weight= RidgeLLS(x_poly(trIdx,:),y_train(trIdx,:),lambda(j));
 ytest=x_poly(teIdx,:)*weight;

 err(i) = sqrt((ytest-y_train(teIdx))'*(ytest-y_train(teIdx)));
end
% Average error
cvErr(j) = sum(err)/sum(CVO.TestSize);
end

figure(11)
plot(lambda,cvErr,'*-')
grid on
xlabel('lambda')
ylabel('average error')

Warning: One or more folds do not contain points from all the groups.

Published with MATLAB® 7.14

	blatt04_2014
	matlab
	Table of Contents
	
	Part (a)
	Part (b) Label Prediction LDA for test data
	Compare LDA with a KNN classifier with K=5
	Cross validation (10-fold) for KNN
	Exercise 6 Cross validation (10-fold) for KNN

