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Introduction

Time series are sequences of data points, typically consisting of
successive measurements made over a time interval.
Time series are used in

statistics, econometrics, weather forecasting

mathematical finance and in any domain of applied science
involving temporal measurements.

In this lecture we will discuss the Basics of Time Series for AR(1),
MA(1), ARMA (1,1)
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Covariance Stationary

Stochastic Process

A stochastic process

{Y1,Y2, ...Yt , ...} = {Yt}∞t=1

is a sequence of random variables indexed by time.
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Stochastic Process (II)

A Realization of a stochastic process up to time T

{Y1 = y1,Y2 = y2, ...YT = yT} = {yt}Tt=1

is a sequence of data points yi indexed by time.
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Covariance Stationary

Stochastic Process

There are two important forms of stationarity:

strictly (or strong) stationarity

covariance (or weak) stationarity
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Strictly Stationary Process

A stochastic process is strictly stationary if for any set
t1, t2, t3, .., tr the joint probability distribution of
{Yt1Yt2 , ...Ytr }does not change when shifted in time.

Strictly stationary example

{Y1,Y3,Y10} ∼ {Y5,Y7,Y14}

The Joint Distribution is Time shift Invariant!
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Covariance Stationary Process

A stochastic process is Covariance Stationary if

E [Yt ] = µ ind t

var (Yt) = σ2 ind t

cov(Yt ,Yt−j) = γj depends j

the covariance between any two terms of the sequence depends
only on the relative positions j of the two terms
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Covariance Stationary Process II

The covariance cov(Yt ,Yt−j) = γj is a measure of the linear
dependence direction for Yt ,Yt−j . And The Correlation ρj defined
as

ρj =
cov(Yt ,Yt−j)√
var(Yt)var(Yt−j)

=
γj
σ2

measures its strenght and it satisfies

−1 ≤ ρj ≤ 1
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Gaussian White Noise

A process{Yt}∞t=1 where Yt ∼ iid N
(
0, σ2

)
is called Gaussian

White Noise GWN process and satisfies

E [Yt ] = 0 ind t

var (Yt) = σ2 ind t

cov(Yt ,Yt−j) = 0 for all j > 0 ind t

other types are Weak-WN (not ind but just uncorr.) and
Independent-WN (not gaussian but any distr.)
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Gaussian White Noise (II)

Figure: Gaussian White Noise GWN (0, 1)
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Non- Stationary Process

In a Non- Stationary Process maybe the mean, the autocovariance
or both might depend ont. For Example,

Trending Process

Random Walk
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The Trending Process

The deterministic trending process is

Yt = β0 + β1t + εt

where

εt ∼ iid N
(
0, σ2

ε

)
E [Yt ] = β0 + β1t

var (Yt) = E [εt ]
2 = σ2

ε

the mean is a function of t.
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The Trending Process (II)

Figure: Deterministic trending Yt = 0.1 ∗ t + εt , εt ∼ N (0, 1)
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Random Walk

The Random Walk is defined as

Yt = Yt−1 + εt

where

εt ∼ iid N
(
0, σ2

ε

)
by recursive substitution

Yt = Y0+
t∑

i=1

εi
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Random Walk (II)

Random Walk

E [Yt ] = Y0

var (Yt) = t � σ2
ε

the variance increase linearly as function of t.
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Random Walk (III)

Figure: Random walk Yt = Yt−1 + εt , εt ∼ N (0, 1)
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Example (II)

Let’s consider

Yt ∼ GWN (0, 1) X ∼ N (0, 1) s.t X ⊥ Yt

then Zt = Yt + X implies that

var (Zt) = 2 and cov (Zt ,Zt−j) = 1

⇒ ρj =
cov(Yt ,Yt−j)√
var(Yt)var(Yt−j)

=
1

2

for all j . The correlation doesn’t vanish with time!
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Moving Average Processes

MA(1) is a process in which the correlation last 1 time period

Yt = µ+ εt + θεt−1

εt ∼ iid N
(
0, σ2

ε

)
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Moving Average Processes (II)

MA(1) satisfy
E [Yt ] = µ

var (Yt) = σ2
ε

(
1 + θ2

)
cov(Yt ,Yt−1) = θσ2

ε
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Moving Average Processes (III)

corr(Yt ,Yt−1) =
θ

(1 + θ2)

we can observe that
θ = 0 ρ = 0

θ > 0 ρ > 0

θ < 0 ρ < 0

|θ| = 1 |ρMAX | = 0.5

and that for any j bigger than 1

corr(Yt ,Yt−j) = 0
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Moving Average Processes (IV)

Figure: MA(1) µ = 1, θ = 0.9 σ2
ε = 1
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AutoRegressive Processes

AR(1) Model are

Yt = µ+ φ (Yt−1 − µ) + εt

εt ∼ iid N
(
0, σ2

ε

)
now the correlation decays to zero progressively if

−1 < φ < 1
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AutoRegressive Processes (II)

For an AR(1) Model we have

E [Yt ] = µ

var (Yt) = σ2
ε/(1−φ2)

cov(Yt ,Yt−1) =
σ2
εφ

(1− φ2)

corr(Yt ,Yt−1) = φ
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AutoRegressive Processes (III)

for any j bigger than 1

cov(Yt ,Yt−j) =
σ2
ε

(1− φ2)
φj

corr(Yt ,Yt−j) = φj

limj→∞ φj = 0

the closer is φ to unity the stronger the correlation in time
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AutoRegressive Processes (IV)

it can be written in the linear regression form (useful for estimation
using least squares)

Yt = c + φYt−1 + εt

where

c = µ (1− φ)
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AutoRegressive Processes (V)

Figure: AR(1) µ = 1, θ = 0.9 σ2
ε = 1
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ARMA(1,1)

An ARMA(1,1) process (sum of MA(1) and AR(1)) is written as

Yt = c + εt + φYt−1 + θεt−1

see that if φ = 0⇒ MA(1) and if θ = 0⇒ AR(1). Then

E [Yt ] = c + φE [Yt−1]

and
E [Yt ] =

c

1− φ
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ARMA(1,1) II

Now the variance is

var (Yt) =

(
1 + θ2 + 2φθ

)
(1− φ2)

σ2
ε

and

cov(Yt ,Yt−1) = φvar (Yt−1) + θσ2
ε =

(φ+ θ) (1 + φθ)

(1− φ2)
σ2
ε

Victor Bernal Fundamentals of Time series 29 / 31



institution-logo-filenameO

Stochastic Processes
Non- Stationary Process

Moving Average Processes
AutoRegressive Processes

ARMA(1,1) Processes
Conclusions

Conclusions

We have studied the basic properties of Time Series Processes

MA(1)

AR(1)

ARMA(1,1)
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