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Introduction

Data analysis is a process for obtaining raw data and converting it into information useful for decision-
making by users. Data is collected and analyzed to answer questions, test hypotheses or disprove theories.[1].
Its a process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful
information, suggesting conclusions, and supporting decision-making. In statistical applications, some people
divide data analysis into descriptive statistics, exploratory data analysis (EDA), and con�rmatory data
analysis (CDA). EDA focuses on discovering new features in the data and CDA on con�rming or falsifying
existing hypotheses. Predictive analytics focuses on application of statistical models for predictive forecasting
or classi�cation. All are varieties of data analysis.

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during
her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and
crew https://es.wikipedia.org/wiki/RMS_Titanic#cite_note-nota-5. This sensational tragedy shocked the
international community and led to better safety regulations for ships.One of the reasons that the shipwreck
led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there
was some element of luck involved in surviving the sinking, some groups of people were more likely to survive
than others, such as women, children, and the upper-class. After leaving Southampton on 10 April 1912,
Titanic called at Cherbourg in France and Queenstown in Ireland before heading west to New York.

In this project, we want to complete the analysis of what sorts of people were likely to survive. In particular,
we would like to apply the tools of machine learning to predict which passengers survived the tragedy. We
will use the data provided at https://www.kaggle.com/c/titanic/data where the reader can �nd also a full
description of the .csv data set.

1 Load and Check the Data

We begin by loading the data to the R environment. We have a training set consisting in 891 passengers each
one with 11 features, and for the test set 418 passengers with 10 attributes (the survived row is missing). In
this way we proceed to add the missing column to the test data and combine both data set.

# Load packages
l i b r a r y ( ggp lot2 )
l i b r a r y ( rpar t )
l i b r a r y ( rpar t . p l o t )
l i b r a r y ( ' randomForest ' )

# Load raw t r a i n and t e s t data
t r a i n <− read . csv ( " t r a i n . csv " , header = TRUE)
t e s t <− read . csv ( " t e s t . csv " , header = TRUE)

# Add a " Surv ived " v a r i a b l e to the t e s t s e t to a l l ow f o r combining data s e t s
t e s t . surv ived <− data . frame ( surv ived = rep ( "None" , nrow( t e s t ) ) , t e s t [ , ] )

# Combine data s e t s
data . combined <− rbind ( t ra in , t e s t . surv ived )
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Now we con�rm if the are any missing values in the features. This is a very important step because NA
values a�ect the analysis of the data, dealing with them could be delicate.

# No c l a s s miss ing
table ( i s .na(data . combined$pc l a s s ) )
table ( i s .nan(data . combined$pc l a s s ) )

# No sex miss ing
table ( i s .na(data . combined$ sex ) )
table ( i s .nan(data . combined$ sex ) )

## 263 ages miss ing (NA not a v a i l a b l e )
table ( i s .na(data . combined$age ) )
table ( i s .nan(data . combined$age ) )

#No name miss ing (2 repea ted names but d i f f e r e n t persons )
table ( i s .na(data . combined$name ) )
length (unique ( as . character (data . combined$name)))−
length ( ( as . character (data . combined$name ) ) )

# One 60.5 years o ld man no fare , embarked by S in 3rd c l a s s
data . combined [which( i s .na(data . combined$ f a r e ) ) , ]

# 2 People wi th no embarked p l ace su r v i v ed
t r a i n [ (which ( ( t r a i n$embarked)=="" ) ) , ]
unique ( as . character ( t r a i n$embarked ) )

We have that

� No class, name or sex are missing.

� 263 ages are missing.

� There is 1 missing Fare who embarked at Southampton in 3rd class.

� There are 2 people with no embarked place.

Because there is a high number of missing values for the age, we will not involve this feature by now. We
can observe in Fig.1.1 and Fig.1.2 that Sex and Class are an important predictors for survival. A more clear
view is shown in Fig.1.3.
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Figure 1.1: Survival Rate by Sex
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Figure 1.2: Survival Rate per Class

Description Correct

Prior Probability Predicting everybody died (larger label) 61.6 %

Maximum Likelihood Predicting that being dead you are man / alive women 81.11 % / 74.20 %

Bayesian a Posterior Predicting that being men you died / alive women 77.17 % / 80.82 %

Table 1: Simple Statistical Predictors of Survival Rates
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Figure 1.3: Survival Rate per Class per Sex

2 Features Engineering

Feature Engineering is the process of using domain knowledge of the data to create features that make
machine learning algorithms work. Now that we see that the variable Sex and Class is important we can
break down the variable Passenger Name into additional meaningful variables which can be used in the
creation of additional new variables. For instance, Passenger Title can be separated and investigated. and
we can reassign equivalent titles in other languages and rare titles to be gathered in one label.
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Figure 2.1: Survival Rate per Embarked place and Class
We can observe that all 3rd class passengers that boarded at Southampton died.

data . combined$ t i t l e <− gsub ( ' ( . * ,  ) | ( \ \ . . * ) ' , ' ' , data . combined$name)
data . combined (data . combined$sex , data . combined$ t i t l e )
r a r e . t i t l e s<−c ( 'Capt ' , ' Col ' , 'Don ' , 'Dr ' , 'Major ' , 'Rev ' ,
' S i r ' , ' Jonkheer ' , 'Dona ' , ' the  Countess ' )

# Also r ea s s i gn Lady , Mlle , Ms, and Mme accord ing l y
data . combined$ t i t l e [which(data . combined$ t i t l e == 'Mlle ' ) ] <− ' Miss '
data . combined$ t i t l e [which(data . combined$ t i t l e == 'Ms ' ) ] <− ' Miss '
data . combined$ t i t l e [which(data . combined$ t i t l e == 'Mme' ) ] <− 'Mrs '
data . combined$ t i t l e [which(data . combined$ t i t l e == 'Lady ' ) ] <− ' Miss '
data . combined$ t i t l e [ data . combined$ t i t l e %in% rare . t i t l e s ] <− ' Rare t i t l e '

#And check i f they were as s i gned c o r r e c t l y accord ing wi th the sex
table (data . combined$sex , data . combined$ t i t l e )

In this way we have separated the titles and gathered them in a subclass consisting of Mr. Mr.s Master.
and Ms. We accomplished this by replacing French title by their English equivalencies and we collected
other unusual titles in the data as Dr., Rev., Don. Major, Capt., Sir, Jonkheer, Donna and Countess in the
category of Rare Titles. Now we can investigate the survival rate according to Titles together with Class.
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Figure 2.2: Titles Distribution per Class

From 2.2 it is apparent that Titles per Class are good predictor as they encode Sex, Age and Class. We
can also create a Family Size feature by adding Sibsp, Parch plus a unit (the passenger himself). It becomes
apparent in Fig. 2.3 that there is a penalty over single passengers and families bigger than four.

# Combine s in sp and parch
data . combined$family . s i z e <− as . factor (data . combined$ s i b sp+ data . combined$parch + 1)

#Check t ha t a l l f ami l y s i z e members are numbers
table ( i s .na(data . combined$family . s i z e ) )
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Figure 2.3: Survival Rate per Family Size

3 Missing Data

There are a number of di�erent ways we could proceed about dealing with missing data. Given the small
size of the data set, we probably should not go for deleting entire observations containing missing values. We
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are left with the option of either replacing missing values with a sensible values given the distribution of the
data, e.g., the mean, median or mode. In the case of the Fare we can observe in Fig. 3.1 that people with
No Embarked gate Survived, they all paid a Fare of 80 Dollars and were 1rst Class passengers. This price
almost matches the median ticket fare for 1rst class embarked in Cherbourg as shown in Fig. 3.1, and its
out of two standard deviation for other classes. In this way we proceed to assign it as embarked at C. In the
same way a passenger which embarked in Southampton in 3rd Class whose Fare is missing. We can assign
the median of the Fare value for a 3rd Class ticket and Embarked place S as seen in Fig. 3.2.
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Figure 3.1: Fare by Embarked Gate

# Missing Gate
# Assign ga te C, peop l e wi th no embarked ga te paid 80 do l a r s
t r a i n [ (which ( ( t r a i n$embarked)=="" ) ) , ]
data . combined [which(data . combined$embarked==' ' ) , ' embarked ' ] <−as . factor ( 'C ' )

# One 60.5 years o ld man no fare , embarked by S in 3rd c l a s s
# Assign the median o f 3 rd c l a s s ga te S
data . combined [which( i s .na(data . combined$ f a r e ) ) , ]
table (data . combined$embarked )
hist (data . combined [which(data . combined$pc l a s s == ' 3 ' & data . combined$embarked == 'S ' )
, ' f a r e ' ] ,+ breaks=10, col="blue " , main="Fare f o r  3 rd c l a s s  Gate S" , xlab="Fare" )
median . f a r e <−
median(na . omit (data . combined [which(data . combined$pc l a s s == ' 3 ' & data . combined$embarked == 'S ' ) , ' f a r e ' ] ) )
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Figure 3.2: 3rd Class Fare Distribution for Southampton Passengers

# How to f i l l in miss ing Age va l u e s ?
# This time you g i v e method="anova" s ince you are p r e d i c t i n g a cont inuous v a r i a b l e .
set . seed (1234)
p r ed i c t ed_age <− rpar t ( age ~ pc l a s s+f a r e+age ,
data=data . combined [ ! i s .na(data . combined$age ) , ] , method="anova" )

# Reassign ages
data . combined [which( i s .na(data . combined$age ) ) , " age" ]
<− predict ( p r ed i c t ed_age , data . combined [which( i s .na(data . combined$age ) ) , ] )
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Figure 3.3: Survival Rate per Age Distribution

4 Decision Tree

Tree models where the target variable can take a �nite set of values are called classi�cation trees. The goal is
to create a model that predicts the value of a target variable based on several input variables. Each interior
node corresponds to one of the input variables; there are edges to children for each of the possible values of
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that input variable. Each leaf represents a value of the target variable given the values of the input variables
represented by the path from the root to the leaf. The arcs coming from a node labeled with a feature are
labeled with each of the possible values of the feature. Each leaf of the tree is labeled with a class or a
probability distribution over the classes. A tree can be "learned" by splitting the source set into subsets
based on an attribute value test. This process is repeated on each derived subset in a recursive manner
called recursive partitioning. The recursion is completed when the subset at a node has all the same value
of the target variable, or when splitting no longer adds value to the predictions. This process of top-down
induction of decision trees is an example of a greedy algorithm, and it is by far the most common strategy
for learning decision trees from data. A greedy algorithm is an algorithm that follows the problem solving
heuristic of making the locally optimal choice at each stage with the hope of �nding a global optimum. In
many problems, a greedy strategy does not in general produce an optimal solution, but nonetheless a greedy
heuristic may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.

# Make e x p l i c i t f a c t o r l e v e l s f o r s p e c i f i c v a r i a b l e s : Sex + Pc lass
t r a i n$ sex <− as . factor ( t r a i n$ sex )
t e s t$pc l a s s <− as . factor ( t e s t$pc l a s s )
l ibrary ( rpar t )
set . seed (1234)

# Train on en t i r e t r a i n i n g s e t f o r T i t l e Class Family . s i z e
f o l <− formula ( surv ived~t i t l e+pc l a s s+family . s i z e )
model<−rpar t ( f o l , method=" c l a s s " ,data=data . combined [ 1 : 8 9 1 , ] , parms=l i s t ( sp l i t=" g i n i " ) )

l ibrary ( r a t t l e )
fancyRpartPlot (model)

Figure 4.1: Decision Tree Model on Training Data

Died Lived

Train Data 549 342
Prediction on Train Data 573 318

Table 2: Decision Tree Training Error
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5 Random Forest

Random forests is a notion of the general technique of random decision forests[2] [3]that are an ensemble
learning method for classi�cation, regression and other tasks, that operate by constructing a multitude of
decision trees at training time and outputting the class that is the mode of the classes (classi�cation) or mean
prediction (regression) of the individual trees. Random decision forests correct for decision trees' habit of
over �tting to their training set.

In particular, trees that are grown very deep tend to learn highly irregular patterns: they over�t their
training sets, because they have low bias, but very high variance. Random forests are a way of averaging
multiple deep decision trees, trained on di�erent parts of the same training set, with the goal of reducing
the variance. This comes at the expense of a small increase in the bias and some loss of interpretability,
but generally greatly boosts the performance of the �nal model.[4].Random forests can be used to rank the
importance of variables in a regression or classi�cation problem in a natural way.

# Random f o r e s t
l ibrary ( ' randomForest ' ) # c l a s s i f i c a t i o n a l gor i thm
# Make as f a c t o r
data . combined$ t i t l e<−as . factor (data . combined$ t i t l e )
data . combined$age<−as . factor (data . combined$age )
# Train a Random Fores t wi th the parameters pc la s s , t i t l e , f ami l y . s i z e
r f . t r a i n . 5 <− data . combined [ 1 : 8 9 1 , c ( " p c l a s s " , " t i t l e " , " fami ly . s i z e " ) ]
r f . l a b e l <− as . factor ( t r a i n$ surv ived )
set . seed (1234)
r f . 5 <− randomForest ( x = r f . t r a i n . 5 , y = r f . l abe l , importance = TRUE, nt ree = 1000)
r f . 5 varImpPlot ( r f . 5 )

# OOB es t imate o f er ror ra t e : 17.17%
# Confusion matrix :
# 0 1 c l a s s . e r ror
# 0 490 59 0.1074681
# 1 94 248 0.2748538
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Figure 5.1: Variable Importance

In k-fold cross-validation, the original sample is randomly partitioned into k equal sized subsamples. Of the
k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining
k = 1 subsamples are used as training data. The cross-validation process is then repeated k times (the folds),
with each of the k subsamples used exactly once as the validation data. The k results from the folds can
then be averaged (or otherwise combined) to produce a single estimation. The advantage of this method over
repeated random sub-sampling is that all observations are used for both training and validation, and each
observation is used for validation exactly once. 10-fold cross-validation is commonly used, but in general k
remains an un�xed parameter.
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# 10 f o l d Cross Va l i da t i on
set . seed (2348)
cv . 1 0 . f o l d s <− c rea teMul t iFo lds ( r f . l abe l , k = 10 , t imes = 10)
# Set up caret ' s t r a inCon t ro l o b j e c t per above .
c t r l . 1 <− t r a inCont ro l (method = " repeatedcv " , number = 10 ,
r epea t s = 10 , index = cv . 1 0 . f o l d s )
set . seed (34324)
r f . 5 . cv . 1 <− t r a i n (x = r f . t r a i n . 5 , y = r f . l abe l , method = " r f " ,
tuneLength = 3 , nt r ee = 1000 , t rContro l = c t r l . 1 )
# Check out r e s u l t s r f . 5 . cv .1

#mtry Accuracy Kappa
#2 0.8134761 0.5955706
#3 0.8085446 0.5836802
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