Exercise 1 (Direction of principal components, 1 point) Below are a number of 2D-data sets. Plot the two principal components.

![Plot of principal components](image)

Exercise 2 (Interpreting principal components, 2 points) A carsharing service runs a survey among 1000 students, who provide information concerning their 1- income, 2- distance they cover by car per month, 3- distance they cover by bike per month, 4- distance they cover by public transport per month, 5- distance they cover by foot per month. Then they run a PCA on the data. Provide answers to the following questions:

- What would it mean if a single eigenvector covered 95% of the total data variance?
- How would you interpret the result if the eigenvector $v_1 = [0, 0, 1, -1, 0]$ covers 90% of the total data variance?
- Why might it be necessary to rescale the data before running PCA in order to obtain a sensible result?

Exercise 3 (Generating samples from a Gaussian distribution, 0.5+0.5+0.5+1+0.5 points) You are given the mean μ and the covariance matrix Σ of a d-dimensional normal density $\mathcal{N}(\mu, \Sigma)$ and you want to sample n points from this density. Assuming that Σ is positive definite, the following MATLAB code will do this for you:

```matlab
S1 = chol(Sigma); X = repmat(mu,n,1) + randn(n,d)*S1;
```

The command $S1 = chol(Sigma)$ generates an upper triangular matrix $S1$ which satisfies $\Sigma = S1 \cdot S1'$. This decomposition is called the Cholesky decomposition. An alternative method, which also works when Σ is only positive semi-definite, is to decompose Σ to eigenvectors and eigenvalues by $[V,D] = eig(Sigma)$ and then form $S2$ by $S2 = V \cdot sqrt(D)$. However, the Cholesky decomposition is numerically more stable and computationally faster than eigen decomposition method.

(a) Show that in eigen decomposition, $\Sigma = S2 \cdot S2'$.

(b) Generate $n = 2000$ points in 3 dimensional space from a Gaussian distribution with mean $\mu = [0, 0, 0]$ and Covariance $\Sigma = [2 0 0; 0 1 0; 0 0 4]$. Plot it with `plot3`.

(c) What are the eigenvalues and eigenvectors of the covariance matrix Σ?
(d) Assume you know eigenvalues and eigenvectors of your covariance matrix:

\[
\Lambda = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, V = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.
\]

Generate \(n = 400 \) points in 2 dimensional space from a Gaussian distribution with mean zero and covariance matrix corresponding to these eigenvalues and eigenvectors (\(\Sigma = V\Lambda V' \)). Plot the points and guess the approximate direction of principal components in the figure.

(e) Add the eigenvectors in \(V \) to your plot. Compare your guessed directions with these eigenvectors.

Exercise 4 (PCA, 2+1 points)

(a) Implement PCA in MATLAB. Do it in a three line MATLAB code: Subtract the mean of your data, calculate the covariance matrix \(C \), and find its eigenvalues and eigenvectors using the MATLAB command \([V,D] = \text{eig}(C)\).

(b) To test your code (if you could not solve part (a), you can use the MATLAB command \text{pca}) generate 500 samples from a Gaussian distribution with mean \(\mu = [1,1] \) and covariance \(\Sigma = [2, -1; -1, 2] \). For generating the points you can either use your code from Exercise 3, or use the MATLAB command \text{normrnd} . Apply your PCA code on this data and compare the result with the eigenvectors of the covariance matrix \(\Sigma \).

Exercise 5 (PCA on USPS data, 1+3 points)

(a) Apply the PCA method on images of digits 5 from USPS dataset (use the training data of the complete dataset — available on the course webpage from Assignment 4). Plot the first and the second principal components as 16x16 grayscale images. You can either use your PCA implementation from Exercise 4 or the MATLAB command \text{pca}.

(b) Choose three images of digits 5 from USPS dataset at random and project them onto 1- the first principal component, 2- the first and the second principal component in \(\mathbb{R}^{256} \) (i.e. as a result you should obtain vectors in the original space — this is View 1 in the notation of the lecture notes). Create a 3 \times 3-subplot (use \text{help subplot} in case you do not know how this works) showing the original images in the first row, the results from 1 in the second row, and the results from 2 in the third row (using \text{imagesc}).

Exercise 6 (Isomap on USPS data, 1+1+1 points) In this exercise you will implement the Isomap method to embed digits 1,2,3,4 from USPS dataset into \(\mathbb{R}^2 \). The code for building kNN graph and the Isomap algorithm itself is provided on the course web page.

In preparation for the following, load the data from \text{usps_train_complete.mat} (available on the course webpage from Assignment 4). Select 300 examples from each of digits \{1,2,3,4\} and put them in variable \(X \). Put the corresponding labels in \(Y \).

(a) Set the connectivity parameter in the kNN graph to \(k = 10 \) and use the following code to plot the embedding in 2 dimensional space using Isomap. Read the manual of the command \text{scatter} to understand how it works.

\[
A = \text{buildKnnGraph}(X,k);
D = \text{graphallshortestpaths}(A,'\text{Directed}', \text{false});
xy = \text{Isomap}(D,2);
figure;
\text{scatter}(xy(:,1),xy(:,2),10,Y,'\text{filled}');
\]

(b) Play with the parameter \(k \). Describe the effect of the parameter on the embedding.

(c) Project the data onto the first two principal components of PCA in \(\mathbb{R}^2 \) (i.e. as a result you should obtain vectors in \(\mathbb{R}^2 \) — this is View 2 in the notation of the lecture notes). Plot the embedding, again using the command \text{scatter}. You can either use your PCA implementation from Exercise 4 or the MATLAB command \text{pca} to perform PCA.
% Machine Learning Assignment 3

clear all; close all; clc;

Part (a)

% [V,D] = eig(Sigma)

Part (b)

% the Cholesky decomposition is a decomposition of a Hermitian, % positive-definite matrix into the product of a lower triangular matrix % and its conjugate transpose,
% R = chol(A) produces an upper triangular matrix R from % the diagonal and upper triangle of matrix A, satisfying % the equation R'*R=A.
% B = repmat(A,m,n) creates a large matrix B % consisting of an m-by-n tiling of copies of A. % each d dimensional point is a row
d = 3; n = 2000; mu = [0, 0 ,0]; Sigma=[2 0 0;0 1 0;0 0 4]; S1 = chol(Sigma); X = repmat(mu,n,1) + randn(n,d)*S1;

figure(1); plot3(X(:,1), X(:,2), X(:,3), '.'); grid on
Part (c)

\[[V \ D] = \text{eig}(\Sigma) \]

\[V \cdot D \cdot V' \] is equal to \(\Sigma \)

\[V = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \]

\[\text{ans} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \]
Part (d)

\[A = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}; \% \text{eigenvalues of cov matrix} \]
\[V = (1/\sqrt{2}) \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \% \text{eigen vectors cov matrix} \]
\[d = 2; \ n = 400; \ mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; \]
\[\text{Sigma} = V^T A V; \]
\[S1 = \text{chol(Sigma)}; \ X = \text{repmat(mu,n,1) + randn(n,d)*S1}; \]

figure(2); hold all;
plot(V(:,1)); \% 1rst eigenvector
plot(X(:,1),X(:,2), '.');

Exercise 4

Each row represents a d dimensional point

\[d = 2; \ n = 500; \ mu = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \text{Sigma} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}; \]
\[S1 = \text{chol(Sigma)}; \ X = \text{repmat(mu,n,1) + randn(n,d)*S1}; \]
\[d= \text{size(X,2)}; \]
\[\text{x_mean} = \text{mean(X,2)}; \% \text{mean of columns of matrix X (horizontal)} \]
\[\text{Xc} = X - \text{x_mean} \times \text{ones(1,d)}; \% \text{centered data matrix} \]
\[\text{C} = (1/n) \times \text{Xc}' \times \text{Xc}; \% \text{covariance matrix} \]
C = cov(Xc); % built-in command produces the same thing
[V,D] = eig(Sigma)

figure(3); hold all;
plot(V(:,1)); % 1rst eigenvector
plot(V(:,2)); % 2nd eigenvector
plot(X(:,1),X(:,2),'.');
legend('1rst eigvect', '2nd eigenvect')

V =
-0.7071 -0.7071
-0.7071 0.7071

D =
1 0
0 3
EXERCISE 1

Figure 0.1. First 2 components

EXERCISE 2

- Data is spread along this direction mostly.
- Negative correlated.
- Same scale (same units) allow us to compare and interpret properly.

EXERCISE 3

In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose.

Solving a linear system. The Cholesky decomposition is mainly used for the numerical solution of linear equations $Ax = b$. If A is symmetric and positive definite, then we can solve $Ax = b$ by first computing the Cholesky decomposition $A = LL^T$, then solving $Ly = b$ for y by forward substitution, and finally solving $L^T x = y$ for x by back substitution. A closely related variant of the classical Cholesky decomposition is the LDL decomposition.

Generating correlated Gaussian numbers. A general way to generate correlated (normal distributed) random numbers with a given correlation matrix C is to generate uncorrelated numbers R and then multiplying them with L the Cholesky matrix of C. Suppose X is build of uncorrelated normal random vector with mean zero

$$cov(X, X) = E[XX^T] = \begin{pmatrix} 1 & 0 \\ : & : \\ 0 & 1 \end{pmatrix}$$

and that we want to generated correlated random vector with correlation matrix C, that using Cholesky decomposition is written as

$$C = LL^T$$

then LX has the desired covariance given by

Covariance Matrix. The covariance matrix (also called the variance-covariance matrix) of an \(n \times 1 \) random vector is an \(n \times n \) matrix whose \(i, j^{th} \) element is the covariance between the \(i^{th} \) and the \(j^{th} \) random variables. Let’s define a matrix of observations where each row is an experiment (or individual) consisting of \(d \) features (dimensions).

\[
X = \begin{bmatrix}
 a_1 & \ldots & a_d \\
 b_1 & \vdots & b_d \\
 n_1 & \ldots & n_d
\end{bmatrix}
\]

so the covariance

\[
\Rightarrow \text{cov}(X, X) = (XX^T)_{n \times n} \quad \text{interindividual}
\]

\[
\Rightarrow \text{cov}(X, X) = (X^TX)_{d \times d} \quad \text{interdimensional}
\]

As we are interested in the information of each of the \(d \) dimensions (features) we proceed with the second.

Fact. When the matrix \(X \) is a Hermitian matrix (resp. symmetric matrix), eigenvectors of \(X \) can be chosen to form an orthonormal basis of \(C^n \) (resp. \(R^n \)). Under such circumstance \(P \) will be a unitary matrix (resp. orthogonal matrix) and \(P^{-1} \) equals the conjugate transpose (resp. transpose) of \(P \).

<table>
<thead>
<tr>
<th>Orthogonal</th>
<th>Unitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OO^* = I = O^*O)</td>
<td>(UU^* = I = U^*U)</td>
</tr>
<tr>
<td>(O) is a real square matrix</td>
<td>(U) is a complex square matrix</td>
</tr>
<tr>
<td>(O) is the transpose</td>
<td>(U^*) is the conjugate transpose</td>
</tr>
</tbody>
</table>

Figure 0.2. Unitary vs Orthogonal Matrix

Let’s consider the transformation change of basis of a matrix \(X \)

\[
X = \begin{bmatrix}
 u & v \\
 \vdots & \vdots
\end{bmatrix} \begin{pmatrix}
 \lambda & 0 \\
 0 & \mu
\end{pmatrix} \begin{bmatrix}
 u & v \\
 \vdots & \vdots
\end{bmatrix}^{-1}
\]

where \(u, v \) are eigenvectors. For every \(n \times n \) real symmetric matrix (e.g. covariance matrix), the eigenvalues are real and the eigenvectors can be chosen such that they are orthogonal to each other. An Orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors. So the matrix of eigenvectors \(P \) is orthogonal then its inverse \(P^{-1} \) is equal to its transpose \(P^T \)

\[
V^TV = \begin{pmatrix}
 v_1 & \ldots & v_1 \\
 u_1 & \ldots & u_1
\end{pmatrix} \begin{pmatrix}
 v_1 & u_1 \\
 \vdots & \vdots
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 v_1^Tv_1 & v_1^Tu_1 \\
 u_1^Tv_1 & u_1^Tu_1
\end{pmatrix} = 1
\]

taking the transpose

\[
(V^TV)^T = VV^T = 1^T
\]

\[
\Rightarrow V^T = V^{-1}
\]

Thus a real symmetric matrix \(X \) can be decomposed as

\[
X = \begin{bmatrix}
 u & v \\
 \vdots & \vdots
\end{bmatrix} \begin{pmatrix}
 \lambda & 0 \\
 0 & \mu
\end{pmatrix} \begin{bmatrix}
 u & v \\
 \vdots & \vdots
\end{bmatrix}^T
\]

which resembles the Cholesky \(LDL \) decomposition.